Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2011_6_1_a5, author = {N. V. Pertsev and K. K. Loginov}, title = {Stochastic model of dynamics of biological community in conditions of consumption by individuals of harmful food resources}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {1--13}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a5/} }
TY - JOUR AU - N. V. Pertsev AU - K. K. Loginov TI - Stochastic model of dynamics of biological community in conditions of consumption by individuals of harmful food resources JO - Matematičeskaâ biologiâ i bioinformatika PY - 2011 SP - 1 EP - 13 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a5/ LA - ru ID - MBB_2011_6_1_a5 ER -
%0 Journal Article %A N. V. Pertsev %A K. K. Loginov %T Stochastic model of dynamics of biological community in conditions of consumption by individuals of harmful food resources %J Matematičeskaâ biologiâ i bioinformatika %D 2011 %P 1-13 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a5/ %G ru %F MBB_2011_6_1_a5
N. V. Pertsev; K. K. Loginov. Stochastic model of dynamics of biological community in conditions of consumption by individuals of harmful food resources. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a5/
[1] Hallam T. G., Clark C. E., Lassiter R. R., “Effects of toxicants on populations: A qualitative approach. I. Equilibrium environment exposure”, Ecol. Model., 18 (1983), 291–304 | DOI | Zbl
[2] Hallam T. G., Clark C. E., Jordan G. S., “Effects of toxicants on populations: A qualitative approach. II. First order kinetics”, J. Math. Biol., 18 (1983), 25–37 | DOI | MR | Zbl
[3] Hallam T. G., De Luna J. L., “Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways”, J. Theoret. Biol., 109 (1984), 411–429 | DOI
[4] Ma Z., Gui G., Wang W., “Persistence and extinction of a population in a polluted environment”, Math. Biosci., 101 (1990), 75–97 | DOI | MR | Zbl
[5] Freedman H. I., Shukla J. B., “Models for the effect of toxicant in single-species and Predator-prey systems”, J. Math. Biol., 30 (1991), 15–30 | DOI | MR | Zbl
[6] Krestin S. V., Rozenberg G. S., “Ob odnom mekhanizme “tsveteniya vody” v vodokhranilische ravninnogo tipa”, Biofizika, 41:3 (1996), 650–654
[7] Dubey B., “Modelling the effect of toxicant on forestry resources”, Indian J. Appl. Math., 28 (1997), 1–12 | MR | Zbl
[8] Dubey B., Hussain J., “Modelling the interaction of two biological species in a polluted environment”, J. Math. Anal. Appl., 246 (2000), 58–79 | DOI | MR | Zbl
[9] Jinxiao P., Zhen J., Zhien M., “Thresholds of Survival for an $n$-Dimensional Volterra Mutualistic System in a Polluted Environment”, J. of Math. Anal. Appl., 252 (2000), 519–531 | DOI | MR | Zbl
[10] Xiao Y., Chen L., “Effects of toxicants on a stage-structured population growth model”, Appl. Math. and Comput., 123 (2001), 63–73 | DOI | MR | Zbl
[11] Mukherjee D., “Persistence and global stability of a population in a polluted environment with delay”, J. of Biol. Sys., 10:3 (2002), 225–232 | DOI | Zbl
[12] Liu B., Chen L., Zhang Y., “The effects of impulsive toxicant input on a population in a polluted environment”, J. of Biol. Sys., 11:3 (2003), 265–274 | DOI | Zbl
[13] Dubey B., Hussain J., “Nonlinear models for the survival of two competing species dependent on resource in industrial environments”, Nonlinear Analysis: Real World Applications, 4 (2003), 21–44 | DOI | MR | Zbl
[14] Pichugina A. N., “Integrodifferentsialnaya model populyatsii, podverzhennoi vozdeistviyu vrednykh veschestv”, Sib. zhurnal ind. matem., 7:4(20) (2004), 130–140 | MR | Zbl
[15] Karelina R. O., Pertsev N. V., “Postroenie dvustoronnikh otsenok dlya reshenii nekotorykh sistem differentsialnykh uravnenii s posledeistviem”, Sib. zhurnal ind. matem., 8:4(24) (2005), 60–72 | MR | Zbl
[16] Naresh R., Sundar S., Shukla J., “Modelling the effect of an intermediate toxic product formed by uptake of a toxicant on plant biomass”, Appl. Math. and Comput., 182 (2006), 151–160 | DOI | MR | Zbl
[17] Feng Z., Liu R., DeAngelis D. J., “Plant-herbivore interactions mediated by plant toxicity”, Theor. Popul. Biol., 73 (2008), 449–459 | Zbl
[18] Li Z., Chen F., “Extinction in periodic competitive stage-structured Lotka–Volterra model with effects of toxic substances”, J. of Comput. and Appl. Math., 231 (2009), 143–153 | DOI | MR | Zbl
[19] Pertsev N. V., Tsaregorodtseva G. E., Pichugina A. N., “Analiz ustoichivosti polozhenii ravnovesiya odnoi modeli populyatsionnoi dinamiki”, Vest. Om. un-ta, 2009, no. 2, 46–49
[20] Pertsev N. V., Tsaregorodtseva G. E., “Matematicheskaya model dinamiki populyatsii, razvivayuscheisya v usloviyakh vozdeistviya vrednykh veschestv”, Sib. zhurnal industr. matematiki, 13:1(41) (2010), 109–120 | Zbl
[21] Loginov K. K., “Vychislitelnye aspekty imitatsionnogo modelirovaniya dinamiki konkuriruyuschikh populyatsii v usloviyakh vozdeistviya toksichnykh veschestv”, Stokhasticheskie modeli v biologii i predelnye algebry – Stochastic models in biology and limit algebras, Trudy konferentsii (Om. Filial In-ta matematiki im. S. L. Soboleva SO RAN, 2–7 avgusta 2010 g.), Izd-vo Om. gos. un-ta, Omsk, 2010, 54–55
[22] Pichugin B. Yu., Pertsev N. V., Loginov K. K., “Stokhasticheskaya model dinamiki populyatsii, razvivayuschikhsya v usloviyakh vozdeistviya toksichnykh veschestv”, Matematicheskaya biologiya i bioinformatika, Doklady III Mezhdunarodnoi konferentsii (g. Puschino, 10–15 oktyabrya 2010 g.), ed. V. D. Lakhno, OOO “MAKS Press”, M., 2010, 208–209
[23] Barucha-Rid A. T., Elementy teorii markovskikh sluchainykh protsessov i ikh prilozheniya, Nauka, M., 1969, 512 pp.
[24] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973, 311 pp. | MR
[25] Ermakov S. M., Mikhailov G. A., Kurs statisticheskogo modelirovaniya, Nauka, M., 1976, 319 pp. | MR | Zbl
[26] Kalinkin A. V., “Markovskie vetvyaschiesya protsessy s vzaimodeistviem”, Uspekhi matematicheskikh nauk, 57:2(344) (2002), 23–84 | MR | Zbl
[27] Kalinkin A. V., Lange A. M., Mastikhin A. V., Shaposhnikov A. A., “Chislennye metody Monte-Karlo dlya modelirovaniya skhem vzaimodeistviya pri diskretnykh sostoyaniyakh”, Vestnik MGTU. Seriya Estestvennye nauki, 2005, no. 2, 53–74
[28] Kalinkin A. V., Lange A. M., “Veroyatnostnyi analog modeli konkurentsii G. F. Gauze”, Stokhasticheskie modeli v biologii i predelnye algebry – Stochastic models in biology and limit algebras, Trudy konferentsii (Om. Filial In-ta matematiki im. S. L. Soboleva SO RAN, 2–7 avgusta 2010 g.), Izd-vo Om. gos. un-ta, Omsk, 2010, 40–43
[29] Marchenko M. A., “Kompleks programm MONC dlya raspredelennykh vychislenii metodom Monte-Karlo”, Sib. zhurnal vych. matematiki, 7:1 (2004), 43–55 | Zbl
[30] Pertsev N. V., Pichugin B. Yu., “Primenenie metoda Monte-Karlo dlya modelirovaniya dinamiki soobschestv vzaimodeistvuyuschikh individuumov”, Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya Vychislitelnye i informatsionno-telekommunikatsionnye sistemy, 2:5 (2006), 70–77