Molecular dynamic of the complexes of $\mathrm{(RADA)_4}$~-- the self-organizing ionic peptides
Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 1, pp. 92-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study we investigated the properties of peptide complexes, which form the structure of protofibrils capable of the assembly into a filament. Using the method of molecular dynamic the data were obtained for the conformational states of di-, tetra-, octa- and dodecamer in explicit water, which allowed us to identify the structure, which might be responsible for self-assembly of ionic peptide molecules. It was shown, the conformational lability of individual molecules is reduced not only by increasing the total number of peptides in the complexes, but also in cases where the polypeptide chain is located in the central area of the protofilament, and thusly more “insulated” from the contacts with a solvent. According to the results of molecular modeling (MD) the $\mathrm{H\text-(RADA)_4\text-OH}$ complexes it appears that increasing size of supramolecular structures leads to increased stability of antiparallel $\beta$-structures and intramolecular hydrogen bonds on the time interval of 10 ns. It was shown the greater fluctuations of atomic coordinates of the peptide backbone correspond to the amino acid residues located on terminal flanks of the peptide molecules. Conclusion was made that the minimally sufficient structure of a protofilament could be as small as tetramer of $\mathrm{H\text-(RADA)_4\text-OH}$ in $\beta$-conformation, while the peptides are situated in antiparallel mode. The same is true for the complexes of a higher level, whose assembly is directed by the key role played by distinctive hydrophobic interactions of the alanine residues which form an “inner layer” of tetramers and/or the greater structures of the emerging filament as well.
@article{MBB_2011_6_1_a3,
     author = {A. V. Danilkovich and E. V. Sobolev and D. A. Tikhonov and T. E. Shadrina and I. P. Udovichenko},
     title = {Molecular dynamic of the complexes of $\mathrm{(RADA)_4}$~-- the self-organizing ionic peptides},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {92--101},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a3/}
}
TY  - JOUR
AU  - A. V. Danilkovich
AU  - E. V. Sobolev
AU  - D. A. Tikhonov
AU  - T. E. Shadrina
AU  - I. P. Udovichenko
TI  - Molecular dynamic of the complexes of $\mathrm{(RADA)_4}$~-- the self-organizing ionic peptides
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2011
SP  - 92
EP  - 101
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a3/
LA  - ru
ID  - MBB_2011_6_1_a3
ER  - 
%0 Journal Article
%A A. V. Danilkovich
%A E. V. Sobolev
%A D. A. Tikhonov
%A T. E. Shadrina
%A I. P. Udovichenko
%T Molecular dynamic of the complexes of $\mathrm{(RADA)_4}$~-- the self-organizing ionic peptides
%J Matematičeskaâ biologiâ i bioinformatika
%D 2011
%P 92-101
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a3/
%G ru
%F MBB_2011_6_1_a3
A. V. Danilkovich; E. V. Sobolev; D. A. Tikhonov; T. E. Shadrina; I. P. Udovichenko. Molecular dynamic of the complexes of $\mathrm{(RADA)_4}$~-- the self-organizing ionic peptides. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 1, pp. 92-101. http://geodesic.mathdoc.fr/item/MBB_2011_6_1_a3/

[1] Zhang S., “Fabrication of novel biomaterials through molecular self-assembly”, Nature Biotechnology, 21 (2003), 1171–1178 | DOI

[2] Hsieh P. C. H., Davis M. E., Gannon J., MacGillivray C., Lee R. T., “Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers”, Journal of Clinical Investigations, 116:1 (2006), 237–248 | DOI

[3] Ellis-Behnke R. G., Liang Y.-X., You S.-W., Tay D. K. C., Zhang S., So K-F, Schneider G. E., “Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision”, Proceedings of National Academy of Sciences of the USA, 103:13 (2006), 5054–5059 | DOI

[4] Goldschmidt L., Teng P. K., Riek R., Eisenberg D., “Identifying the amylome, proteins capable of forming amyloid-like fibrils”, Proceedings of National Academy of Sciences of the USA, 107:8 (2010), 3487–3492 | DOI

[5] Harper J. D., Lansbury P. T. (jr.), “Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins”, Annual Review of Biochemistry, 66 (1997), 385–407 | DOI

[6] Lambert M. P., “Diffusible, nonfibrillar ligands derived from $\mathrm A\beta_{1\text-42}$ are potent central nervous system neurotoxins”, Proceedings of National Academy of Sciences of the USA, 95 (1998), 6448–6453 | DOI

[7] Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., Teplow D. B. Amyloid $\beta$-protein fibrillogenesis-detection of a protofibrillar intermediate, Journal of Biological Chemistry, 272 (1997), 22364–22372 | DOI

[8] Haass C., Selkoe D. J., “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid Ab-peptide”, Nature Review Molecular and Cellular Biology, 8 (2007), 101–112 | DOI

[9] Carulla N., Zhou M., Arimon M., Gairi M., Giralt E., Robinson C. V., Dobson C. M., “Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation”, Proceedings of National Academy of Sciences of the USA, 106 (2009), 7828–7833 | DOI

[10] Goldsbury C., Kistler J., Aebi U., Arvinte T., Cooper G. J. S., “Watching amyloid fibrils grow by time-lapse atomic force microscopy”, Journal of Molecular Biology, 285 (1999), 33–39 | DOI

[11] Marek P., Abedini A., Song B. B., Kanungo M., Johnson M. E., Gupta R., Zaman W., Wong S. S., Raleigh D. P., “Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology”, Biochemistry (Moscow), 46 (2007), 3255–3261

[12] Zhang S., Rich A., “Direct convertion of a oligopeptide from $\beta$-sheet to an $\alpha$-helix: A model for amyloid formation”, Proceedings of National Academy of Sciences of the USA, 94 (1997), 23–28 | DOI

[13] Williamson J. A., Miranker A. D., “Direct detection of transient a-helical states in islet amyloid polypeptide”, Protein Sciences, 16 (2007), 110–117 | DOI

[14] Danilkovich A. V., Tikhonov D. A., Sobolev E. V., Shadrina T. E., Udovichenko I. P., “K voprosu o vybore potentsialnykh polei dlya izucheniya molekulyarnoi dinamiki ionnykh peptidov i ikh dimerov”, Matematicheskaya biologiya i bioinformatika, 6:1 (2011), 53–62

[15] Macindoe G., Mavridis L., Venkatraman V. et al., “HexServer: an FFT-based protein docking server powered by graphics processors”, Nucleic Acids Research, 38 (2010), 445–449 | DOI

[16] Tovchigrechko A., Vakser I. A., “Development and testing of an automated approach to protein docking”, Proteins, 60:2 (2005), 296–301 | DOI

[17] HyperChem$^\circledR$ Computational Chemistry. Practical Guide – Theory and Method, HC 70-00-04-00, Hypercube Inc, Gainesville, 2002, 350 pp.

[18] Case D. A., Cheatham T. E. III., Darden T. et al., “The Amber biomolecular simulation programs”, Journal of Computational Chemistry, 26 (2005), 1668–1688 | DOI

[19] Jorgensen W. L., Chandrasekhar J., Madura J. D. et al., “Comparison of simple potential functions for simulating liquid water”, Journal of Chemical Physics, 79 (1983), 926–935 | DOI

[20] Duan Y., Wu C., Chowdhury S. et al., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations”, Journal of Computational Chemistry, 24 (2003), 1999–2012 | DOI

[21] Lee M. C., Duan Y., “Distinguish protein decoys by using a scoring function based on a new Amber force field, short molecular dynamics simulations, and the generalized Born solvent model”, Proteins, 55 (2004), 620–634 | DOI

[22] Kabsch W., Sander C., “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features”, Biopolymers, 12 (1983), 2577–2637 | DOI

[23] Onufriev A., Bashford D., Case D. A., “Modification of the Generalized Born Model Suitable for Macromolecules”, Journal of Physical Chemistry B, 104:15 (2000), 3712–3720 | DOI