Method of pseudoaveraged functions in the RISM theory. Temperature dependence of oxytocin peptide hydration
Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 202-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the temperature range from 280 K to 340 K oxytocin peptide is simulated by molecular dynamics in various surroundings including explicit water solvent. Using geometry configurations of the peptide we found Gibbs free energy by solving RISM equations for pseudoaveraged correlation functions. Various functionals of Gibbs free energy or excess chemical potential were compared. In the partial wave theory as well as in the approximation of Gaussian fluctuations Gibbs free energy is independent of temperature. Calculations by Singler–Chandler formula or its modifications taking account of repulsive bridge corrections show linear dependence of Gibbs energy on temperature. Analysis suggests that the temperature dependence is associated with the term proportional to the square of the total correlation function.
@article{MBB_2010_5_a4,
     author = {D. A. Tikhonov and E. V. Sobolev},
     title = {Method of pseudoaveraged functions in the {RISM} theory. {Temperature} dependence of oxytocin peptide hydration},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {202--214},
     publisher = {mathdoc},
     volume = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2010_5_a4/}
}
TY  - JOUR
AU  - D. A. Tikhonov
AU  - E. V. Sobolev
TI  - Method of pseudoaveraged functions in the RISM theory. Temperature dependence of oxytocin peptide hydration
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2010
SP  - 202
EP  - 214
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2010_5_a4/
LA  - ru
ID  - MBB_2010_5_a4
ER  - 
%0 Journal Article
%A D. A. Tikhonov
%A E. V. Sobolev
%T Method of pseudoaveraged functions in the RISM theory. Temperature dependence of oxytocin peptide hydration
%J Matematičeskaâ biologiâ i bioinformatika
%D 2010
%P 202-214
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2010_5_a4/
%G ru
%F MBB_2010_5_a4
D. A. Tikhonov; E. V. Sobolev. Method of pseudoaveraged functions in the RISM theory. Temperature dependence of oxytocin peptide hydration. Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 202-214. http://geodesic.mathdoc.fr/item/MBB_2010_5_a4/

[1] Chandler D., Andersen H. C., “Optimized cluster expansions for classical fluids. II. Theory of molecular liquids”, Journal of Chemical Physics, 57 (1972), 1930–1937 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1678513'>10.1063/1.1678513</ext-link>

[2] Tikhonov D. A., Sobolev E. V., “Usrednennyi po molekulyarnym traektoriyam metod integralnykh uravnenii v priblizhenii RISM”, Matematicheskaya biologiya i bioinformatika, 5:2 (2010), 188–201, (data obrascheniya 17.12.2010) <ext-link ext-link-type='uri' href='http://www.matbio.org/downloads/Tikhonov2010(5_188).pdf'>http://www.matbio.org/downloads/Tikhonov2010(5_188).pdf</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2085666'>2085666</ext-link>

[3] Schweizer K. S., Curro J. G., “Integral-equation theory of the structure of polymer melts”, Physical Review Letters, 58:3 (1987), 246–249 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.58.246'>10.1103/PhysRevLett.58.246</ext-link>

[4] Hirata F., Rossky P. J., Pettitt B. M., “The interionic potential of mean force in a molecular polar solvent from an extended RISM equation”, Journal of Chemical Physics, 78:6 (1983), 4133–4144 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.445090'>10.1063/1.445090</ext-link>

[5] van Leeuwen J. M. J., Groeneveld J., de Boer J., “New method for the calculation of the pair correlation function. I”, Physica, 25:7–12 (1959), 792–808 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=110266'>110266</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0094.44505'>0094.44505</ext-link>

[6] Kovalenko A., Hirata F., “Self-consistent description of a metal-water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model”, Journal of Chemical Physics, 110:20 (1999), 10095–10112 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.478883'>10.1063/1.478883</ext-link>

[7] Tikhonov D. A., Polozov R. V., Timoshenko E. G. et al., “Hydration of a B-DNA fragment in the method of atom-atom correlation functions with the reference interaction site model approximation”, The Journal of Chemical Physics, 109 (1998), 1528–1539 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.476704'>10.1063/1.476704</ext-link>

[8] Sobolev E. V., Tikhonov D. A., “Primenenie metoda RISM dlya otsenki svobodnoi energii svyazyvaniya 4', 6-diamidino-2-fenilindola v malom zhelobe DNK po molekulyarno-dinamicheskoi traektorii”, Matematicheskaya biologiya i bioinformatika, 5:2 (2010), 98–113, (data obrascheniya 15.12.2010) <ext-link ext-link-type='uri' href='http://www.matbio.org/downloads/Sobolev2010(5_98).pdf'>http://www.matbio.org/downloads/Sobolev2010(5_98).pdf</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=46880'>46880</ext-link>

[9] Chandler D., Singh Y., Richardson D. M., “Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents”, Journal of Chemical Physics, 81:4 (1984), 1975–1982 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.447820'>10.1063/1.447820</ext-link>

[10] Singer S. J., Chandler D., “Free energy functions in the extended RISM approximation”, Molecular Physics, 55 (1985), 621–625 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00268978500101591'>10.1080/00268978500101591</ext-link>

[11] Morita T., Hiroike K., “A new approach to the theory of classical fluids. I”, Progress of Theor. Phys., 23 (1960), 1003–1027 <ext-link ext-link-type='doi' href='https://doi.org/10.1143/PTP.23.1003'>10.1143/PTP.23.1003</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=116542'>116542</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0097.44203'>0097.44203</ext-link>

[12] Zichi D. A., Rossky P. J., “Molecular conformational equilibria in liquids”, The Journal of Chemical Physics, 84:3 (1986), 1712–1723 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.450469'>10.1063/1.450469</ext-link>

[13] Ten-no S., “Free energy of solvation for the reference interaction site model: Critical comparison of expressions”, Journal of Chemical Physics, 115 (2001), 3724–3731 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1389851'>10.1063/1.1389851</ext-link>

[14] Ten-no S., Iwata S., “On the connection between the reference interaction site model integral equation theory and the partial wave expansion of the molecular Ornstein–Zernike equation”, Journal of Chemical Physics, 111 (1999), 4865–4868 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.479746'>10.1063/1.479746</ext-link>

[15] Kovalenko A., Hirata F., “Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method”, Journal of Chemical Physics, 113 (2000), 2793–2805 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1305885'>10.1063/1.1305885</ext-link>

[16] Pearlman D. A., Case D. A., Caldwell J. W. et al., “AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules”, Computational Physics Communications, 91 (1995), 1–41 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0010-4655(95)00041-D'>10.1016/0010-4655(95)00041-D</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0886.92035'>0886.92035</ext-link>

[17] Case D. A., Darden T. A., Cheatham T. E. et al., AMBER 9, University of California, San Francisco, 2006

[18] Onufriev A., Bashford D., Case D. A., “Modification of the Generalized Born Model Suitable for Macromolecules”, Journal of Physical Chemistry B, 104:15 (2000), 3712–3720 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp994072s'>10.1021/jp994072s</ext-link>

[19] Cornell W. D., Cieplak P., Bayly C. I. et al., “A Second Generation Force Field for the Simulation of Proteins and Nucleic Acids”, Journal of the American Chemical Society, 117 (1995), 5179–5197 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja00124a002'>10.1021/ja00124a002</ext-link>

[20] Jorgensen W. L., Chandrasekhar J., Madura J. D. et al., “Comparison of simple potential functions for simulating liquid water”, Journal of Chemical Physics, 79:2 (1983), 926–935 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.445869'>10.1063/1.445869</ext-link>

[21] York D., Evensen N. M., Martínez M. L., Delgado J. D. B., “Unified equations for the slope, intercept, and standard errors of the best straight line”, American Journal of Physics, 72:3 (2004), 367–375 <ext-link ext-link-type='doi' href='https://doi.org/10.1119/1.1632486'>10.1119/1.1632486</ext-link>

[22] Tikhonov D. A., Sobolev E. V., “Otsenki energii Gibbsa gidratatsii po molekulyarno-dinamicheskim traektoriyam metodom integralnykh uravnenii teorii zhidkostei v priblizhenii RISM”, Zhurnal fizicheskoi khimii, 85:3 (2011) (to appear)