An averaged over molecular trajectories method of integral equations of the theory of liquids in RISM approximation
Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 188-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach for studying the influence of solvent on molecular systems is suggested. It is based on the method of integral equations in the theory of liquids in RISM approximation. We obtained a new integral equation in which the matrix of intramolecular correlations is averaged over molecular trajectories calculated by molecular dynamics method. This approach enables one to take into account the mobility of dissolved molecules in assessing the solvation effect. Using the oxytocin peptide as an example we compare the results obtained in the framework of the new method with standard calculations of thermodynamical values averaged over trajectory. It is shown that in averaging over trajectory, all the structural and thermodynamic parameters of the peptide solvation obtained by the new method lie on the interval of statistical error.
@article{MBB_2010_5_a3,
     author = {D. A. Tikhonov and E. V. Sobolev},
     title = {An averaged over molecular trajectories method of integral equations of the theory of liquids in {RISM} approximation},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {188--201},
     publisher = {mathdoc},
     volume = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2010_5_a3/}
}
TY  - JOUR
AU  - D. A. Tikhonov
AU  - E. V. Sobolev
TI  - An averaged over molecular trajectories method of integral equations of the theory of liquids in RISM approximation
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2010
SP  - 188
EP  - 201
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2010_5_a3/
LA  - ru
ID  - MBB_2010_5_a3
ER  - 
%0 Journal Article
%A D. A. Tikhonov
%A E. V. Sobolev
%T An averaged over molecular trajectories method of integral equations of the theory of liquids in RISM approximation
%J Matematičeskaâ biologiâ i bioinformatika
%D 2010
%P 188-201
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2010_5_a3/
%G ru
%F MBB_2010_5_a3
D. A. Tikhonov; E. V. Sobolev. An averaged over molecular trajectories method of integral equations of the theory of liquids in RISM approximation. Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 188-201. http://geodesic.mathdoc.fr/item/MBB_2010_5_a3/

[1] Chandler D., Andersen H. C., “Optimized cluster expansions for classical fluids. II. Theory of molecular liquids”, Journal of Chemical Physics, 57 (1972), 1930–1937 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1678513'>10.1063/1.1678513</ext-link>

[2] Hirata F., Rossky P. J., Pettitt B. M., “The interionic potential of mean force in a molecular polar solvent from an extended RISM equation”, Journal of Chemical Physics, 78:6 (1983), 4133–4144 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.445090'>10.1063/1.445090</ext-link>

[3] Tikhonov D. A., Sobolev E. V., “Otsenki energii Gibbsa gidratatsii po molekulyarno-dinamicheskim traektoriyam metodom integralnykh uravnenii teorii zhidkostei v priblizhenii RISM”, Zhurnal fizicheskoi khimii, 85:3 (2011) (to appear)

[4] Morita T., Hiroike K., “A new approach to the theory of classical fluids. I”, Progress of Theoretical Physics, 23 (1960), 1003–1027 <ext-link ext-link-type='doi' href='https://doi.org/10.1143/PTP.23.1003'>10.1143/PTP.23.1003</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=116542'>116542</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0097.44203'>0097.44203</ext-link>

[5] Lue L., Blankschtein D., “Liquid-state theory of hydrocarbon-water systems: application to methane, ethane, and propane”, The Journal of Physical Chemistry, 96:21 (1992), 8582–8594 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j100200a069'>10.1021/j100200a069</ext-link>

[6] Kovalenko A., Hirata F., “Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method”, Journal of Chemical Physics, 113 (2000), 2793–2805 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1305885'>10.1063/1.1305885</ext-link>

[7] van Leeuwen J. M. J., Groeneveld J., de Boer J., “New method for the calculation of the pair correlation function. I”, Physica, 25:7–12 (1959), 792–808 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=110266'>110266</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0094.44505'>0094.44505</ext-link>

[8] Kovalenko A., Hirata F., “Self-consistent description of a metal-water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model”, Journal of Chemical Physics, 110:20 (1999), 10095–10112 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.478883'>10.1063/1.478883</ext-link>

[9] Tikhonov D. A., Polozov R. V., Timoshenko E. G. et al., “Hydration of a B-DNA fragment in the method of atom-atom correlation functions with the reference interaction site model approximation”, Journal of Chemical Physics, 109 (1998), 1528–1539 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.476704'>10.1063/1.476704</ext-link>

[10] Tikhonov D. A., “Metod integralnykh uravnenii teorii zhidkostei dlya izucheniya gidratatsii makromolekul”, Kompyutery i superkompyutery v biologii, eds. Lakhno V. D., Ustinin M. N., Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2002, 209–233

[11] Sobolev E. V., Tikhonov D. A., “Primenenie metoda RISM dlya otsenki svobodnoi energii svyazyvaniya 4', 6-diamidino-2-fenilindola v malom zhelobe DNK po molekulyarno-dinamicheskoi traektorii”, Matematicheskaya biologiya i bioinformatika, 5:2 (2010), 98–113, (data obrascheniya 15.12.2010) <ext-link ext-link-type='uri' href='http://www.matbio.org/downloads/Sobolev2010(5_98).pdf'>http://www.matbio.org/downloads/Sobolev2010(5_98).pdf</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=46880'>46880</ext-link>

[12] Chandler D., Singh Y., Richardson D. M., “Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents”, The Journal of Chemical Physics, 81:4 (1984), 1975–1982 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.447820'>10.1063/1.447820</ext-link>

[13] Singer S. J., Chandler D., “Free energy functions in the extended RISM approximation”, Molecular Physics, 55 (1985), 621–625 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00268978500101591'>10.1080/00268978500101591</ext-link>

[14] Zichi D. A., Rossky P. J., “Molecular conformational equilibria in liquids”, The Journal of Chemical Physics, 84:3 (1986), 1712–1723 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.450469'>10.1063/1.450469</ext-link>

[15] Ten-no S., “Free energy of solvation for the reference interaction site model: Critical comparison of expressions”, Journal of Chemical Physics, 115 (2001), 3724–3731 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1389851'>10.1063/1.1389851</ext-link>

[16] Ten-no S., Iwata S., “On the connection between the reference interaction site model integral equation theory and the partial wave expansion of the molecular Ornstein–Zernike equation”, Journal of Chemical Physics, 111 (1999), 4865–4868 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.479746'>10.1063/1.479746</ext-link>