Kinematic visualization of human magnetic encephalography
Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 176-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is presented for the analysis of magneto-encephalographic (MEG) data from a cognitive study involving auditory activity in humans. Signal averaging based on the moment of stimulus onset was used to extract the evoked magnetic field from the spontaneous activity. Positions and dipole moment estimation for auditory sources i.e. “the inverse problem” was addressed for each time point in the interstimulus interval. Two field-map sequences were generated, one corresponding to the direct magnetic field responses over the head and the other to the inverse-problem solutions and software developed for simultaneously field map superposition (SFMS). SFMS, included whole-head tomography, stimulus time series, auditory evoked fields and inverse-problem solutions. A computer movie was created to provide an accessible overview of magnetic-encephalography methods and to demonstrate its application to auditory research. The methods and software developed are applicable to other MEG recording sets.
@article{MBB_2010_5_a2,
     author = {M. N. Ustinin and E. Kronberg and S. V. Filippov and V. V. Sychev and E. V. Sobolev and R. Llin\'as},
     title = {Kinematic visualization of human magnetic encephalography},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {176--187},
     publisher = {mathdoc},
     volume = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2010_5_a2/}
}
TY  - JOUR
AU  - M. N. Ustinin
AU  - E. Kronberg
AU  - S. V. Filippov
AU  - V. V. Sychev
AU  - E. V. Sobolev
AU  - R. Llinás
TI  - Kinematic visualization of human magnetic encephalography
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2010
SP  - 176
EP  - 187
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2010_5_a2/
LA  - en
ID  - MBB_2010_5_a2
ER  - 
%0 Journal Article
%A M. N. Ustinin
%A E. Kronberg
%A S. V. Filippov
%A V. V. Sychev
%A E. V. Sobolev
%A R. Llinás
%T Kinematic visualization of human magnetic encephalography
%J Matematičeskaâ biologiâ i bioinformatika
%D 2010
%P 176-187
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2010_5_a2/
%G en
%F MBB_2010_5_a2
M. N. Ustinin; E. Kronberg; S. V. Filippov; V. V. Sychev; E. V. Sobolev; R. Llinás. Kinematic visualization of human magnetic encephalography. Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 176-187. http://geodesic.mathdoc.fr/item/MBB_2010_5_a2/

[1] Llinas R., Ribary U., Jeanmonod D., Kronberg E., Mitra P., “Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography”, Proceedings of the National Academy of Sciences of the United States of America, 96 (1999), 15222–15227 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.96.26.15222'>10.1073/pnas.96.26.15222</ext-link>

[2] Carver F. W., Fuchs A., Jantzen K. J., Kelso J. A. S., “Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: rate dependence and transient to steady-state transition”, Clinical Neurophysiology, 113 (2002), 1921–1931 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1388-2457(02)00299-7'>10.1016/S1388-2457(02)00299-7</ext-link>

[3] Mikhailova E. S., Slavutskaya A. V., Konyshev V. A., Pirogov Yu. A., Anisimov N. V., Shevelev I. A., “Location of the Dipoles of the P1 Wave of Visual Evoked Potential in the Human Brain”, Doklady Biological Sciences, 409 (2006), 285–289 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0012496606040041'>10.1134/S0012496606040041</ext-link>

[4] Ustinin M. N., Makhortykh S. A., Molchanov A. M., Ol'shevetz M. M., Pankratov A. N., Pankratova N. M., Sukharev V. I., Sychev V. V., “Problems of magnetic encephalography data analysis”, Computers and supercomputers in biology, eds. Lakhno V. D. and Ustinin M. N., Institute of computer research, Moscow, Izhevsk, 2002, 327–348 (Russian)

[5] Ustinin M. N., Spectral-analytic methods of computational and experimental data processing, Doctor thesis of physical and mathematical sciences, Pushchino, 2004 (In Russian)

[6] Lu Z. L., Williamson S. J., Kaufman L., “Human auditory primary and association cortex have differing lifetimes for activation traces”, Brain Res., 572 (1992), 236–241 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0006-8993(92)90475-O'>10.1016/0006-8993(92)90475-O</ext-link>

[7] Sarvas J., “Basic mathematic and electromagnetic concepts of the biomagnetic inverse problem”, Phys. Med. Biol., 32 (1987), 11–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0031-9155/32/1/004'>10.1088/0031-9155/32/1/004</ext-link>

[8] Lagarias J. C., Reeds J. A., Wright M. H., and Wright P. E., “Convergence properties of the Nelder-Mead simplex method in low dimensions”, SIAM Journal of Optimization, 9 (1998), 112–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1137/S1052623496303470'>10.1137/S1052623496303470</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1662563'>1662563</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1005.90056'>1005.90056</ext-link>

[9] Sandwell D. T., “Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data”, Geophysical Research Letters, 2 (1987), 139–142 <ext-link ext-link-type='doi' href='https://doi.org/10.1029/GL014i002p00139'>10.1029/GL014i002p00139</ext-link>

[10] Herman G. T. and Liu H. K., “Three-Dimensional Display of Human Organs from Computer Tomograms”, Computer Graphics and Image Processing, 9:1 (1979), 1–21 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0146-664X(79)90079-0'>10.1016/0146-664X(79)90079-0</ext-link>

[11] Pizer S. M., Fuchs H., Mosher C., Lifshitz L., Abram G. D., Ramanathan S., Whitney B. T., Rosenman J. G., Staab E. V., Chaney E. L. and Sherouse G., “3-D Shaded Graphics in Radiotherapy and Diagnostic Imaging”, NCGA'86 conference proceedings (Anaheim, CA, 1986), 107–113

[12] Lorensen W. E., Cline H. E., “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”, Computer Graphics, 21:4 (1987) <ext-link ext-link-type='doi' href='https://doi.org/10.1145/37402.37422'>10.1145/37402.37422</ext-link>

[13] Cabral B., Cam N. and Foran J., “Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware”, ACM Symp. on Vol. Vis., 1994

[14] Levoy M., “Display of Surfaces from Volume Data”, IEEE Computer Graphics and Applications, 8:3 (1988), 29–37 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/38.511'>10.1109/38.511</ext-link>

[15] Drebin R. A., Carpenter L. and Hanrahan P., “Volume Rendering”, SIGGRAPH Comput. Graph., 22 (1988), 65–74 <ext-link ext-link-type='doi' href='https://doi.org/10.1145/378456.378484'>10.1145/378456.378484</ext-link>

[16] Sobolev E. V., Dynamical visualization of 3D data of biological experiments, Master's thesis in applied mathematics, Pushchino, 2003 (In Russian)

[17] Maxon. Cinema 4D, <ext-link ext-link-type='uri' href='http://www.maxon.net'>http://www.maxon.net</ext-link>

[18] <ext-link ext-link-type='uri' href='http://www.pcpro.co.uk/reviews/software/250669/maxon-cinema-4d-11'>http://www.pcpro.co.uk/reviews/software/250669/maxon-cinema-4d-11</ext-link>

[19] Eyeon. Digital Fusion, <ext-link ext-link-type='uri' href='http://www.eyeonline.com'>http://www.eyeonline.com</ext-link>

[20] <ext-link ext-link-type='uri' href='http://www.eyeonline.com/Web/EyeonWeb/Products/fusion6/fusion6.aspx'>http://www.eyeonline.com/Web/EyeonWeb/Products/fusion6/fusion6.aspx</ext-link>