Analysis of pine looper population dynamics using discrete time mathematical models
Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 114-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In current publication three time series of pine looper Bupalus piniarius L. (density of eggs per square meter, density of larvae per square meter and density of pupae per square meter) population dynamics are analyzed. Datasets are presented in publication by H. Klomp (1966) and can be found with free access in the Internet (The Global Population Dynamics Database, No 2727, No 2728 and No 2729). For approximation of every time series five models with discrete time (in particular, Moran–Ricker model, and discrete logistic model) were used. All five models describe the influence of self-regulative mechanisms on population dynamics only, and at the same time all models contain the minimal number of unknown parameters. Minimization of total sum of squared deviations between empirical and theoretical trajectories allowed obtaining the best estimations of model parameters. Sets of deviations between empirical and theoretical trajectories were tested for “normality” with zero average (Kolmogorov–Smirnov criteria, and Shapiro–Wilk criteria). Sequences of deviations were also tested for existence of serial correlation (Durbin–Watson criteria). Provided analysis showed that discrete logistic model is a unique model, which gives good approximation of empirical datasets. Thus, it was shown that in the situation being considered the pine looper population dynamics can be explained as a result of influence intra-population self-regulative mechanisms only.
@article{MBB_2010_5_a1,
     author = {L. V. Nedorezov},
     title = {Analysis of pine looper population dynamics using discrete time mathematical models},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {114--123},
     publisher = {mathdoc},
     volume = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2010_5_a1/}
}
TY  - JOUR
AU  - L. V. Nedorezov
TI  - Analysis of pine looper population dynamics using discrete time mathematical models
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2010
SP  - 114
EP  - 123
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2010_5_a1/
LA  - ru
ID  - MBB_2010_5_a1
ER  - 
%0 Journal Article
%A L. V. Nedorezov
%T Analysis of pine looper population dynamics using discrete time mathematical models
%J Matematičeskaâ biologiâ i bioinformatika
%D 2010
%P 114-123
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2010_5_a1/
%G ru
%F MBB_2010_5_a1
L. V. Nedorezov. Analysis of pine looper population dynamics using discrete time mathematical models. Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 114-123. http://geodesic.mathdoc.fr/item/MBB_2010_5_a1/

[1] Isaev A. S., Khlebopros R. G., Nedorezov L. V., Kiselev V. V., Kondakov Yu. P., Dinamika chislennosti lesnykh nasekomykh, Nauka, Novosibirsk, 1984, 224 pp.

[2] Isaev A. S., Khlebopros R. G., Nedorezov L. V., Kiselev V. V., Kondakov Yu. P., Sukhovolskii V. G., Populyatsionnaya dinamika lesnykh nasekomykh, Nauka, M., 2001, 347 pp.

[3] Vorontsov A. I., Patologiya lesa, Lesn. Promyshlennost, M., 1978, 272 pp.

[4] Vorontsov A. I., Lesnaya entomologiya, Vysshaya shkola, M., 1982, 384 pp.

[5] Palnikova E. N., Sviderskaya I. V., Sukhovolskii V. G., Sosnovaya pyadenitsa v lesakh Sibiri: Ekologiya, dinamika chislennosti, vliyanie na nasazhdeniya, Nauka, Novosibirsk, 2002, 232 pp.

[6] Klomp H., “The dynamics of a field population of the pine looper, Bupalus piniarius L. (Lep., Geom.)”, Advances in Ecological Research, 3 (1966), 207–305 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0065-2504(08)60312-8'>10.1016/S0065-2504(08)60312-8</ext-link>

[7] Uilyamson M., Analiz biologicheskikh populyatsii, Mir, M., 1975, 271 pp.

[8] Palnikova E. N., Sukhovolskii V. G., Tarasova O. V., Lesnaya entomologiya. Metody analiza populyatsionnoi dinamiki i sostoyaniya osobei lesnykh nasekomykh, SibGTU, Krasnoyarsk, 2005, 68 pp.

[9] Palnikova E. N., Meteleva M. K., Sukhovolskii V. G., “Vliyanie modifitsiruyuschikh faktorov na dinamiku chislennosti lesnykh nasekomykh i razvitie vspyshek massovogo razmnozheniya”, Lesovedenie, 2006, no. 5, 29–35

[10] Turchin P., Complex Population Dynamics: A Theoretical/Empirical Synthesis, Princeton University Press, Princeton, 2003, 536 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2080584'>2080584</ext-link>

[11] Turchin P., Wood S. N., Ellner S. P., Kendall B. E., Murdoch W. W., Fischlin A., Casas J., McCauley E., Briggs C. J., “Dynamical effects of plant quality and parasitism on population cycles of larch budmoth”, Ecology, 84:5 (2003), 1207–1214 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/0012-9658(2003)084[1207:DEOPQA]2.0.CO;2'>10.1890/0012-9658(2003)084[1207:DEOPQA]2.0.CO;2</ext-link>

[12] Nedorezov L. V., “Vliyanie kachestva korma i parazitizma na tsiklicheskie kolebaniya seroi listvennichnoi listovertki”, Evroaziatskii entomologicheskii zhurnal, 6:2 (2007), 229–244

[13] Nedorezov L. V., Sadykova D. L., “K probleme vybora matematicheskoi modeli dinamiki populyatsii (na primere zelenoi dubovoi listovertki)”, Evroaziatskii entomologicheskii zhurnal, 4:4 (2005), 263–272

[14] Nedorezov L. V., Sadykov A. M., Sadykova D. L., “Dinamika chislennosti zelenoi dubovoi listovertki: primenenie diskretno-nepreryvnykh modelei s plotnostno-zavisimoi nemonotonnoi rozhdaemostyu”, Zhurn. obsch. biol., 71:1 (2010), 41–51

[15] Bazykin A. D., Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 181 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=801544'>801544</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0605.92015'>0605.92015</ext-link>

[16] Meinard Smit Dzh., Modeli v ekologii, Mir, M., 1976, 184 pp.

[17] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=537932'>537932</ext-link>

[18] Bellows T. S. Jr., “The descriptive properties of some models for density dependence”, J. Anim. Ecol., 50 (1981), 139–156 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/4037'>10.2307/4037</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=644721'>644721</ext-link>

[19] Ashikhmina E. V., Kulikov A. N., Skaletskaya E. I., Frisman E. Ya., “Matematicheskoe modelirovanie dinamiki velichiny zagotovok lokalnoi populyatsii manchzhurskoi belki (Sciurus vulgaris mantchuricus)”, Zhurnal obschei biologii, 43:5 (1982), 705–711

[20] Frisman E. Ya., Sycheva E. V., “Matematicheskaya model dinamiki chislennosti odnorodnoi populyatsii s diskretno-nepreryvnym vremenem”, Dalnevostochnyi matematicheskii sbornik, 1998, no. 6, 149–157

[21] Frisman E. Ya., Sycheva E. V., Izrailskii Yu. G., “Dinamicheskaya neustoichivost populyatsii promyslovogo vida, svyazannaya s vozdeistviem promysla”, Doklady RAN, 380:3 (2001), 425–429

[22] Kostitzin V. A., La Biologie Mathematique, A. Colin, Paris, 1937, 236 pp.

[23] Moran P. A. P., “Some remarks on animal population dynamics”, Biometrics, 6:3 (1950), 250–258 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/3001822'>10.2307/3001822</ext-link>

[24] Ricker W. E., “Stock and recruitment”, J. Fish. Res. board of Canada, 11:5 (1954), 559–623

[25] Skellam J. G., “Random dispersal in theoretical populations”, Biometrics, 38 (1951), 196–218 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=43440'>43440</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0043.14401'>0043.14401</ext-link>

[26] Morris R. F., “Single-factor analysis in population dynamics”, Ecology, 40 (1959), 580–588 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/1929811'>10.2307/1929811</ext-link>

[27] Varley G. C., Gradwell G. R., “Key factors in population studies”, J. Anim. Ecol., 29 (1960), 399–401 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/2213'>10.2307/2213</ext-link>

[28] Varley G. C., Gradwell G. R., “Recent advances in insect population dynamics”, Ann. Rev. Ent., 15 (1970), 1–24 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.en.15.010170.000245'>10.1146/annurev.en.15.010170.000245</ext-link>

[29] Beverton R. J., Holt S. J., “On the dynamics of the exploited fish populations”, Great Brit. Min. Agr. Fish, Food, Fish. Invest. Ser. 2, 19 (1957), 533

[30] Kendall B. E., Briggs C. J., Murdoch W. W., Turchin P., Ellner S. P., McCauley E., Nisbet R. M., Wood S. N., “Why do population cycle? A synthesis of statistical and mechanistic modeling approaches”, Ecology, 80 (1999), 1789–1805 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO;2'>10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO;2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1673106'>1673106</ext-link>

[31] Wood S. N., “Minimizing model fitting objectives that contain spurious local minima by bootstrap restarting”, Biometrics, 57 (2001), 240–244 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.0006-341X.2001.00240.x'>10.1111/j.0006-341X.2001.00240.x</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1833312'>1833312</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:05858953'>05858953</ext-link>

[32] Wood S. N., “Partially specified ecological models”, Ecological Monographs, 71 (2001), 1–25 <ext-link ext-link-type='doi' href='https://doi.org/10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2'>10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2</ext-link>

[33] Bolshev L. N., Smirnov N. V., Tablitsy matematicheskoi statistiki, Nauka, M., 1983, 416 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=735434'>735434</ext-link>

[34] Shapiro S. S., Wilk M. B., Chen H. J., “A comparative study of various tests of normality”, J. of the American Statistical Association, 63 (1968), 1343–1372 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/2285889'>10.2307/2285889</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=237069'>237069</ext-link>

[35] Dreiper N., Smit G., Prikladnoi regressionnyi analiz, v. 1, Finansy i statistika, M., 1986, 366 pp.

[36] Dreiper N., Smit G., Prikladnoi regressionnyi analiz, v. 2, Finansy i statistika, M., 1987, 351 pp.