Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2010_5_a0, author = {E. V. Sobolev and D. A. Tikhonov and H. Fridman and T. N. Truong}, title = {Application of the {RISM} method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of {a~DNA} along simulation trajectory}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {98--113}, publisher = {mathdoc}, volume = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2010_5_a0/} }
TY - JOUR AU - E. V. Sobolev AU - D. A. Tikhonov AU - H. Fridman AU - T. N. Truong TI - Application of the RISM method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of a~DNA along simulation trajectory JO - Matematičeskaâ biologiâ i bioinformatika PY - 2010 SP - 98 EP - 113 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2010_5_a0/ LA - ru ID - MBB_2010_5_a0 ER -
%0 Journal Article %A E. V. Sobolev %A D. A. Tikhonov %A H. Fridman %A T. N. Truong %T Application of the RISM method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of a~DNA along simulation trajectory %J Matematičeskaâ biologiâ i bioinformatika %D 2010 %P 98-113 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2010_5_a0/ %G ru %F MBB_2010_5_a0
E. V. Sobolev; D. A. Tikhonov; H. Fridman; T. N. Truong. Application of the RISM method to estimate the relative gibbs free energies of 4${}'$,6-diamidino-2-phenylindole binding within the minor groove of a~DNA along simulation trajectory. Matematičeskaâ biologiâ i bioinformatika, Tome 5 (2010), pp. 98-113. http://geodesic.mathdoc.fr/item/MBB_2010_5_a0/
[1] Pearlman D. A., Case D. A., Caldwell J. W. et al., “AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules”, Computational Physics Communications, 91 (1995), 1–41 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0010-4655(95)00041-D'>10.1016/0010-4655(95)00041-D</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0886.92035'>0886.92035</ext-link>
[2] Cornell W. D., Cieplak P., Bayly C. I. et al., “A second generation force field for the simulation of proteins and nucleic acids”, Journal of the American Chemical Society, 117 (1995), 5179–5197 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja00124a002'>10.1021/ja00124a002</ext-link>
[3] Case D. A., Darden T. A., Cheatham T. E. et al., AMBER 8, University of California, San Francisco, 2004 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1140.90495'>1140.90495</ext-link>
[4] Chandler D., Andersen H. C., “Optimized cluster expansions for classical fluids. II. Theory of molecular liquids”, Journal of Chemical Physics, 57 (1972), 1930–1937 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1678513'>10.1063/1.1678513</ext-link>
[5] Hansen J. P., McDonald I. R., Theory of simple liquids, Academic Press, London, 1986
[6] Kitao A., Hirata F., Go N., “Effects of solvent on the conformation and the collective motions of a protein. 3. Free energy”, Journal of Physical Chemistry, 97 (1993), 10231–10235 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j100141a053'>10.1021/j100141a053</ext-link>
[7] Imai T., Hiraoka R., Kovalenko A., Hirata F., “Water molecules in a protein cavity detected by a statistical-mechanical theory”, Journal of the American Chemical Society, 127 (2005), 15334–15335 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja054434b'>10.1021/ja054434b</ext-link>
[8] Imai T., Kovalenko A., Hirata F., “Partial molar volume of proteins studied by the threedimensional reference interaction site model theory”, Journal of Physical Chemistry B, 109 (2005), 6658–6665 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp045667c'>10.1021/jp045667c</ext-link>
[9] Imai T., Kovalenko A., Hirata F., “Solvation thermodynamics of protein studied by the 3D-RISM theory”, Chemical Physics Letters, 395 (2004), 1–6 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cplett.2004.06.140'>10.1016/j.cplett.2004.06.140</ext-link>
[10] Kinoshita M., Okamoto Y., Hirata F., “Solvent effects on conformational stability of peptides: RISM analyses”, Journal of Molecular Liquids, 90 (2001), 195–204 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0167-7322(01)00122-2'>10.1016/S0167-7322(01)00122-2</ext-link>
[11] Kinoshita M., Okamoto Y., Hirata F., “Peptide conformations in alcohol and water: Analyses by the reference interaction site model theory”, Journal of the American Chemical Society, 122 (2000), 2773–2779 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja993939x'>10.1021/ja993939x</ext-link>
[12] Kinoshita M., Okamoto Y., Hirata F., “Analysis on conformational stability of C-peptide of ribonuclease a in water using the reference interaction site model theory and Monte Carlo simulated annealing”, Journal of Chemical Physics, 110 (1999), 4090–4100 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.478290'>10.1063/1.478290</ext-link>
[13] Kinoshita M., Okamoto Y., Hirata F., “First-principle determination of peptide conformations in solvents: Combination of Monte Carlo simulated annealing and RISM theory”, Journal of the American Chemical Society, 120 (1998), 1855–1863 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja972048r'>10.1021/ja972048r</ext-link>
[14] Svensson B., Woodward C. E., “Integral equation theory for proteins: Application to Ca2+ binding in Calbindin D9k”, Journal of Physical Chemistry, 99 (1995), 1614–1618 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j100005a037'>10.1021/j100005a037</ext-link>
[15] Tikhonov D. A., Polozov R. V., Timoshenko E. G. et al., “Hydration of a B-DNA fragment in the method of atom-atom correlation functions with the reference interaction site model approximation”, Journal of Chemical Physics, 109 (1998), 1528–1539 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.476704'>10.1063/1.476704</ext-link>
[16] Tikhonov D. A., “Metod integralnykh uravnenii teorii zhidkostei dlya izucheniya gidratatsii makromolekul”, Kompyutery i superkompyutery v biologii, eds. Lakhno V. D., Ustinin M. N., Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2002, 209–233
[17] Spackova N., Cheatham III T. E., Ryjacek F. et al., “Molecular Dynamics Simulations and Thermodynamics Analysis of DNA-Drug Complexes. Minor Groove Binding between 4',6-Diamidino-2-phenylindole and DNA Duplexes in Solution”, Journal of the American Chemical Society, 125 (2003), 1759–1769 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja025660d'>10.1021/ja025660d</ext-link>
[18] Larsen T. A., Goodsell D. S., Cascio D. et al., “The structure of DAPI bound to DNA”, Journal of Biomolecular Structure & Dynamics, 7 (1989), 477–491
[19] Vlieghe D., Sponer J., Meervelt L. V., “Crystal structure of d(GGCCAATTGG) complexed with DAPI reveals novel binding mode”, Biochemistry, 38 (1999), 16443–16451 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi9907882'>10.1021/bi9907882</ext-link>
[20] Loontiens F. G., McLaughlin L. W., Diekmann S., Clegg R. M., “Binding of hoechst 33258 and 4',6-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substituents”, Biochemistry, 30:1 (1991), 182–189 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi00215a027'>10.1021/bi00215a027</ext-link>
[21] Waring M. J., Bailly C., “The influence of the exocyclic amino group characteristic of GC base pairs on molecular recognition of specific nucleotide sequences in DNA by Berenil and DAPI”, Journal of Molecular Recognition, 10 (1997), 121–127 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/(SICI)1099-1352(199705/06)10:3<121::AID-JMR356>3.0.CO;2-L'>10.1002/(SICI)1099-1352(199705/06)10:3<121::AID-JMR356>3.0.CO;2-L</ext-link>
[22] Trotta E., D'Ambrosio E., Ravagnan G., Paci M., “Simultaneous and different binding mechanisms of 4', 6-diamidino-2-phenylindole to DNA hexamer (d(CGATCG))2. A 1H NMR study”, Journal of Biological Chemistry, 271 (1996), 27608–27614 <ext-link ext-link-type='doi' href='https://doi.org/10.1074/jbc.271.44.27608'>10.1074/jbc.271.44.27608</ext-link>
[23] Wilson W. D., Tanious F. A., Barton H. J. et al., “Binding of 4',6-diamidino-2-phenylindole (DAPI) to GC and mixed sequences in DNA: Intercalation of a classical groove-binding molecule”, Journal of the American Chemical Society, 111 (1989), 5008–5010 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja00195a080'>10.1021/ja00195a080</ext-link>
[24] Wilson W. D., Tanious F. A., Barton H. J. et al., “The interaction of unfused polyaromatic heterocycles with DNA: Intercalation, groove-binding and bleomycin amplification”, Anti-Cancer Drug Design., 5 (1990), 31–42
[25] Honig B., Sbarp K., Yang A.-S., “Macroscopic Models of Aqueous Solutions: Biological and Chemical Applic”, Journal of Physical Chemistry, 97 (1993), 1101–1109 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j100108a002'>10.1021/j100108a002</ext-link>
[26] Hirata F., Rossky P. J., Pettitt B. M., “The interionic potential of mean force in a molecular polar solvent from an extended RISM equation”, Journal of Chemical Physics, 78 (1983), 4133–4144 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.445090'>10.1063/1.445090</ext-link>
[27] van Leeuwen J. M. J., Groeneveld J., de Boer J., “New method for the calculation of the pair correlation function. I”, Physica, 25 (1959), 792–808 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0031-8914(59)90004-7'>10.1016/0031-8914(59)90004-7</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=110266'>110266</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0094.44505'>0094.44505</ext-link>
[28] Kovalenko A., Hirata F., “Self-consistent description of a metal-water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model”, Journal of Chemical Physics, 110 (1999), 10095–10112 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.478883'>10.1063/1.478883</ext-link>
[29] Kelley C. T., Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1344684'>1344684</ext-link>
[30] Gillan M. J., “A new method of solving the liquid structure integral equations”, Molecular Physics, 38 (1979), 1781–1794 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00268977900102861'>10.1080/00268977900102861</ext-link>
[31] Chandler D., Singh Y., Richardson D., “Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents”, Journal of Chemical Physics, 81 (1984), 1975–1982 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.447820'>10.1063/1.447820</ext-link>
[32] Singer S. J., Chandler D., “Free energy functions in the extended RISM approximation”, Molecular Physics, 55 (1985), 621–625 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00268978500101591'>10.1080/00268978500101591</ext-link>
[33] Morita T., Hiroike K., “A new approach to the theory of classical fluids. I”, Progress of Theoretical Physics, 23 (1960), 1003–1027 <ext-link ext-link-type='doi' href='https://doi.org/10.1143/PTP.23.1003'>10.1143/PTP.23.1003</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=116542'>116542</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0097.44203'>0097.44203</ext-link>
[34] Zichi D. A., Rossky P. A., “Molecular conformational equilibria in liquids”, Journal of Chemical Physics, 84 (1985), 1712–1723 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.450469'>10.1063/1.450469</ext-link>
[35] Ten-no S., “Free energy of solvation for the reference interaction site model: Critical comparison of expressions”, Journal of Chemical Physics, 115 (2001), 3724–3731 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1389851'>10.1063/1.1389851</ext-link>
[36] Ten-no S., Iwata S., “On the connection between the reference interaction site model integral equation theory and the partial wave expansion of the molecular Ornstein–Zernike equation”, Journal of Chemical Physics, 111 (1999), 4865–4868 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.479746'>10.1063/1.479746</ext-link>
[37] Kovalenko A., Hirata F., “Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method”, Journal of Chemical Physics, 113 (2000), 2793–2805 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1305885'>10.1063/1.1305885</ext-link>
[38] Jorgensen W. L., Chandrasekhar J., Madura J. D. et al., “Comparison of simple potential functions for simulating liquid water”, Journal of Chemical Physics, 79 (1983), 926–935 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.445869'>10.1063/1.445869</ext-link>