On the possibility of superfast charge transfer in DNA
Matematičeskaâ biologiâ i bioinformatika, Tome 4 (2009), pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerous experiments on charge transfer in DNA yield a contradictory picture of the transfer: on the one hand they suggest that it is a very slow process and the charge is almost completely localized on one Watson–Crick pair, but on the other hand they demonstrate that the charge can travel a very large distance. To explain this contradiction we propose that superfast charge transitions are possible between base pairs on individual DNA fragments resulting in the establishment of a quasi-equilibrium charge distribution during the time less than that of charge solvation. In other words, we hypothesize these states irrespective of the nature of a mechanism responsible for their establishment, whether it be a hopping mechanism, or a band mechanism, or superexchange, or polaron transport, etc., leaving aside the debates of which one is more advantageous. We discuss qualitative differences between the charge transfer in a dry DNA and that in a solution. In a solution, of great importance is the charge solvation which decreases the transfer rate $10^7\div10^8$ times as compared with a dry DNA. We consider the conditions under which the superfast charge transfer in a DNA leading to quasiequilibrium distributions of polarons in a duplex is possible. Comparison of calculated quasi-equilibrium distributions with the experiment testifies to the possibility of superfast tunnel transitions of a hole in a DNA duplex in a solution.
@article{MBB_2009_4_a2,
     author = {V. D. Lakhno and V. B. Sultanov},
     title = {On the possibility of superfast charge transfer in {DNA}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2009_4_a2/}
}
TY  - JOUR
AU  - V. D. Lakhno
AU  - V. B. Sultanov
TI  - On the possibility of superfast charge transfer in DNA
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2009
SP  - 46
EP  - 51
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2009_4_a2/
LA  - ru
ID  - MBB_2009_4_a2
ER  - 
%0 Journal Article
%A V. D. Lakhno
%A V. B. Sultanov
%T On the possibility of superfast charge transfer in DNA
%J Matematičeskaâ biologiâ i bioinformatika
%D 2009
%P 46-51
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2009_4_a2/
%G ru
%F MBB_2009_4_a2
V. D. Lakhno; V. B. Sultanov. On the possibility of superfast charge transfer in DNA. Matematičeskaâ biologiâ i bioinformatika, Tome 4 (2009), pp. 46-51. http://geodesic.mathdoc.fr/item/MBB_2009_4_a2/

[1] Schuster G. B. (ed.), Long-Range Charge Transfer in DNA, Springer, Heidelberg, 2004

[2] Loft S., Poulsen H. E., J. Mol. Med., 74 (1996), 297–312 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00207507'>10.1007/BF00207507</ext-link>

[3] Demple B., Harrison L., Ann. Rev. Biochem., 63 (1994), 915–948 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.bi.63.070194.004411'>10.1146/annurev.bi.63.070194.004411</ext-link>

[4] David S. S., Williams S. D., Chem. Rev., 98 (1998), 1221–1261 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/cr980321h'>10.1021/cr980321h</ext-link>

[5] Breen A. P., Murphy J. A., Free Radical. Biol. Med., 18 (1995), 1033–1077 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0891-5849(94)00209-3'>10.1016/0891-5849(94)00209-3</ext-link>

[6] Lakhno V. D., Int. J. Quant. Chem., 108 (2008), 1970–1981 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.21717'>10.1002/qua.21717</ext-link>

[7] Offenhäusser A., Rinaldi R. (eds.), Nanobioelectronics – for Electronics, Biology and Medicine, Springer, New York, 2009

[8] Conwell E. M., Rakhmanova S. R., Proc. Natl. Acad. Sci. USA, 97 (2000), 4556–4560 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.050074497'>10.1073/pnas.050074497</ext-link>

[9] Lakhno V. D., J. Biol. Phys., 26 (2000), 133–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1005275211233'>10.1023/A:1005275211233</ext-link>

[10] Fialko N. S., Lakhno V. D., Phys. Lett. A, 278 (2000), 108–111 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0375-9601(00)00755-6'>10.1016/S0375-9601(00)00755-6</ext-link>

[11] Bixon M., Jortner J. J., Phys. Chem. B, 104 (2000), 3906–3913 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp9936493'>10.1021/jp9936493</ext-link>

[12] Yu Z. G., Song X., Phys. Rev. Lett., 86 (2001), 6018–6021 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.86.2162'>10.1103/PhysRevLett.86.2162</ext-link>

[13] Cuniberti G., Craco L., Porath D., Dekker C., Phys. Rev. B, 65 (2002), 241314 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.65.241314'>10.1103/PhysRevB.65.241314</ext-link>

[14] Lakhno V. D., Modern Methods for Theoretical Physical Chemistry of Biopolymers, eds. Starikov E. B., Lewis S., Tanaka S., Elsevier, Amsterdam, 2006, 461–481

[15] Lakhno V. D., Sultanov V. B., Pettitt B. M., Chem. Phys. Lett., 400 (2004), 47–53 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cplett.2004.10.077'>10.1016/j.cplett.2004.10.077</ext-link>

[16] Voityuk A. A., J. Chem. Phys. B, 122:20 (2005), 204904 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1924551'>10.1063/1.1924551</ext-link>

[17] Giese B., Spichtly M., Chem. Phys. Chem., 1 (2000), 195–198

[18] Ly D., Sanii L., Schuster G. B., J. Am. Chem. Soc., 121 (1999), 9400–9410 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja991753s'>10.1021/ja991753s</ext-link>

[19] Liu C.-S., Hernandez R., Schuster G. B., JACS, 126 (2004), 2877–2884 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja0378254'>10.1021/ja0378254</ext-link>

[20] Giese B., Wessely S., Angew. Chem. Int. Ed., 39 (2000), 3490–3491 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/1521-3773(20000602)39:11&lt;1970::AID-ANIE1970&gt;3.0.CO;2-B'>10.1002/1521-3773(20000602)39:11&lt;1970::AID-ANIE1970&gt;3.0.CO;2-B</ext-link>

[21] Giese B., Curr. Opin. Chem. Biol., 6 (2002), 612–618 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1367-5931(02)00364-2'>10.1016/S1367-5931(02)00364-2</ext-link>

[22] Giese B., Meggers E., Wessely S., Sporman M., Biland A., CHIMIA, 54 (2000), 547–551

[23] Giese B., Wessely S., Chem. Commun., 2001, 2108–2109 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/b106059g'>10.1039/b106059g</ext-link>

[24] Giese B., Biland A., Chem. Commun., 2002, 667–672 <ext-link ext-link-type='doi' href='https://doi.org/10.1039/b111044f'>10.1039/b111044f</ext-link>

[25] Holstein T., Ann. Phys., 8 (1959), 325–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90002-8'>10.1016/0003-4916(59)90002-8</ext-link>

[26] Holstein T., Ann. Phys., 8 (1959), 343–389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90003-X'>10.1016/0003-4916(59)90003-X</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>

[27] Starikov E. B., Phil. Mag., 85 (2005), 3435–3462 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/14786430500157110'>10.1080/14786430500157110</ext-link>

[28] Lakhno V. D., J. Biol. Phys., 30 (2004), 123–128 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/B:JOBP.0000035844.35839.60'>10.1023/B:JOBP.0000035844.35839.60</ext-link>

[29] Lakhno V. D., Chem. Phys. Lett., 437 (2007), 198 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cplett.2007.02.035'>10.1016/j.cplett.2007.02.035</ext-link>

[30] Voityk A. A., Modern Methods for Theoretical Physical Chemistry of Biopolymers, eds. Starikov E. B., Lewis S., Tanaka S., Elsevier, Amsterdam, 2006