Model analysis of dynamics of the long-distance assimilates transport in the freely growing tree
Matematičeskaâ biologiâ i bioinformatika, Tome 4 (2009) no. 1, pp. 1-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model description of a long-distance transport of assimilates of freely growing tree based on an original method of separation of periodically arising sections in architecture of a tree and on the model description of dynamics of their biomass is considered. The photosynthesizing biomass of sections (physiologically active part of mass) is considered in transport model as the distributed source of assimilates, as a containing volume for their transport and as a sink (expenditures on maintenance respiration, on growth of a biomass and on “sedimentation” of phytomass – a passive part of mass). The biomass of root section is a sink also. The “diffusion” formulation of the mass-flow mechanism of transport (Műnch E.) together with the cylindrical geometry of the containing volume of section is used. It is supposed also that the basic resistance to the flow is concentrated near to borders between sections. The model demonstrates presence so-called “respiratory barrier” as consequence of a exponential function of the respiration expenditures' dependence on value of biomasses, and model shows also that sections along tree height are stratified on alternating groups of acceptor (as a whole consuming assimilates) and donor (giving assimilates back) sections. The acropetal denudation of a tree results in a drop of production of assimilates in the inferior sections with the years and the osmotic pressure drop in sections (possible because of it) could be prevented by decrease of cells' volume, probably, by sedimentation of the callose.
@article{MBB_2009_4_1_a0,
     author = {V. V. Galitskii},
     title = {Model analysis of dynamics of the long-distance assimilates transport in the freely growing tree},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2009_4_1_a0/}
}
TY  - JOUR
AU  - V. V. Galitskii
TI  - Model analysis of dynamics of the long-distance assimilates transport in the freely growing tree
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2009
SP  - 1
EP  - 20
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2009_4_1_a0/
LA  - ru
ID  - MBB_2009_4_1_a0
ER  - 
%0 Journal Article
%A V. V. Galitskii
%T Model analysis of dynamics of the long-distance assimilates transport in the freely growing tree
%J Matematičeskaâ biologiâ i bioinformatika
%D 2009
%P 1-20
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2009_4_1_a0/
%G ru
%F MBB_2009_4_1_a0
V. V. Galitskii. Model analysis of dynamics of the long-distance assimilates transport in the freely growing tree. Matematičeskaâ biologiâ i bioinformatika, Tome 4 (2009) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/MBB_2009_4_1_a0/

[1] Kursanov A. L., Transport assimilyatov v rastenii, Nauka, M., 1976, 646 pp.

[2] Minchin P. E. H., Lacointe A., “New understanding on phloem physiology and possibleconsequences for modelling long-distance carbon transport”, New Phytologist., 166 (2005), 771–779 | DOI

[3] Thornley J. H. M., “A model to describe the partitioning of photosynthate during vegetative plant growth”, Ann. Bot., 36 (1972), 419–430

[4] Thornley J. H. M., “A balanced quantitative model for root: shoot ratios in vegetative plants”, Ann. Bot., 36 (1972), 431–441

[5] Wilson J. B., “A review of evidence on the control of shoot: root ratio, in relation to models”, Ann. Bot., 61 (1988), 433–449

[6] Galitskii V. V., “O dinamike raspredeleniya po vysote biomassy svobodno rastuschego dereva. Modelnyi analiz”, DAN, 407 (2006), 564–566

[7] Zimmerman M. H., Brown C. L., TREES (Structure and Function), Springer, New York

[8] Münch E., Die Stoffbewegungen in der Pflanze, G. Fischer, Jena, 1930, 234 pp.

[9] Galitskii V. V., “Modelirovanie soobschestva rastenii: individualno- orientirovannyi podkhod. I. Model rasteniya”, Izv. AN. Ser. biol., 1999, no. 5, 539–546

[10] Galitskii V. V., “The 2D modeling of tree community: from “microscopic” description to macroscopic behavior”, For. Ecol. Manage., 183 (2003), 95–111 | DOI

[11] Galitskii V. V., “Modelnyi analiz pravila -3/2 dlya soobschestva rastenii”, DAN, 362 (1998), 840–843

[12] Galitskii V. V., “O dinamike integralnoi mery konkurentsii v soobschestvakh rastenii razlichnoi stepeni odnorodnosti”, Izv. RAN. Ser. biol., 2006, no. 2, 156–164

[13] Galitskii V. V., “Dynamics of competition in uniform communities of trees”, Community Ecology, 7 (2006), 69–80 | DOI

[14] Purves D. W., and Law R., “Experimental derivation of functions relating growth of Arabidopsis thaliana to neighbour size and distance”, J. Ecol., 90 (2002), 882–894 | DOI

[15] Sukachev V. N., Izbrannye trudy, v. I, Nauka, M., 1972, 418 pp.

[16] Dale V. H., Doyle T. W., Shugart H. H., “A comparison of tree growth models”, Ecol. Model., 29 (1985), 145–169 | DOI

[17] Barthelemy D., Caraglio Y., “Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny”, Ann. Bot., 99 (2007), 75–407 | DOI

[18] Hölttä T., Vesala T., Sevanto S., Perämäki M., Nikinmaa E., “Modelling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis”, Trees, 20 (2006), 67–78 | DOI

[19] Galitskii V. V., “Kvazi-trekhmernaya model svobodno rastuschego dereva”, Issledovano v Rossii, 2004, 2646–2662 http://zhurnal.ape.relarn.ru/articles/2004/247.pdf

[20] Galitskii V. V., “Sektsionnaya struktura dereva. Modelnyi analiz vertikalnogo raspredeleniya biomassy”, Issledovano v Rossii, 2008, 594–605. URL: http://zhurnal.ape.relarn.ru/articles/2008/053.pdf

[21] Poletaev I. A., “O matematicheskikh modelyakh elementarnykh protsessov v biogeotsenozakh”, Problemy kibernetiki, 16, Nauka, M., 1966, 171–190

[22] Tselniker Yu. L., “Struktura krony eli”, Lesovedenie, 1994, no. 4, 35–44

[23] Shinozaki K., Yoda K., Hozumi K., Kira T., “A quantitative analysis of plant form. Pipe model theory (I)”, Jpn. J. Ecol., 14 (1964), 97–105

[24] Peñuelas J., “A big issue for trees”, Nature, 437 (2005), 964–965

[25] Serebryakova T. I., Voronin N. S., Elenevskii A. G., Batygina T. B., Shorina N. I., Savinykh N. P., Botanika s osnovami fitotsenologii: Anatomiya i morfologiya rastenii, Akademkniga, M., 2006, 543 pp.

[26] Galitskii V. V., Tyuryukanov A. N., “O metodologicheskikh predposylkakh modelirovaniya v biogeotsenologii”: A. N. Tyuryukanov, Izbrannye trudy, Izd-vo REFIA, M., 2001, 94–108

[27] Zotin A. I., Termodinamicheskii podkhod k problemam razvitiya, rosta i stareniya, Nauka, M., 1974, 184 pp.

[28] Enquist B. J., “Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems”, Tree Physiology, 22 (2002), 1045–1064

[29] Timiryazev K. A., Zhizn rasteniya, Izd. M. i S. Sabashnikovykh, M., 1914, 360 pp. | Zbl

[30] Press W. H., Teukolsky S. A., Vettering W. T., Flannery B. P., Numerical Recipes in FORTRAN: the art of scientific computing, Cambridge Univ. Press, Cambridge | MR

[31] Orlov A. Ya., “Vliyanie pochvennykh faktorov na osnovnye osobennosti nekotorykh tipov lesa yuzhnoi taigi”, Byull. MOIP, otd. biol., 1960, no. 3 | MR

[32] Smirnov V. V., Organicheskaya massa v nekotorykh lesnykh fitotsenozakh Evropeiskoi chasti SSSR, Nauka, M., 1971, 361 pp. | MR

[33] Dale J. E., Sutcliffe J. F., “Phloem Transport”, Plant physiology, v. 9, Water and Solutes in Plants, eds. Steward F. C., Sutcliffe J. F., Dale J. E. Orlands, Academic Press, New York, 1986, 455–549

[34] Villenbrink I., “Transport assimilyatov vo floeme: regulyatsiya i mekhanizm”, Fiziologiya rastenii, 49 (2002), 13–21

[35] Ezau K., Anatomiya semennykh rastenii, v. I, Mir, M., 1980, 218 pp.

[36] Mason T. G. and E. J. Maskell, “Studyes on the transport of carbohydrates in the cotton plant. A study of djurnal variation in the carbohydrates of leaf, bark and wood, and of the effects of “ringing””, Ann. Bot., 42 (1928), 189–253

[37] Thompson M. V., Holbrook N. M., “Scaling phloem transport: water potential equilibrium and osmoregulatory flow”, Plant, Cell and Environment., 26 (2003), 1561–1577 | DOI

[38] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Nauka, M., 1964, 527 pp. | Zbl

[39] Thompson M. V., Holbrook N. M., “Application of a Single-solute Non-steady-state Phloem Model to the Study of Long-distance Assimilate Transport.”, J. Theor. Biol., 220 (2003), 419–455 | DOI

[40] Curtis O. F., “Studies on solute translocation in plants. Experiments indicating that translocation is dependent on the activity of living cells”, Amer. J. Bot., 16 (1929), 154–168 | DOI

[41] Sheehy J. E., Mitchell P. L., Durand J.-L., Gastal F., Woofward F. I., “Calculation of translocation coefficients from phloem anatomy for use in crop models”, Ann. Bot., 76 (1995), 263–269 | DOI

[42] Peters W. S., A. J. E. van Bel and M. Knoblauch, “The geometry of the forisome-sieve element-sieve plate complex in the phloem of Vicia faba L. leaflets”, Journal of Experimental Botany, 57:12 (2006), 3091–3098 | DOI