Сonnection of shape of globular proteins with their folding and unfolding rates
Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008), pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of protein self-organization is one of the most important problems of molecular biology nowadays. Despite the recent success in understanding general principles of protein folding, details of this process is yet to be elucidated. That is why the search for the factors influencing protein folding kinetics is going on. We check in this study the hypothesis that more spherical proteins should fold more slowly than elongated ones. To this aim we analyze a number of structural determinants, designed for description protein shape, as well as their relationship with rates of protein folding and unfolding. We show here that dimensionless structural parameters describing protein shape have low correlation with protein folding and unfolding rates. At the same time structural determinants taking into account both protein shape and its size show good agreement with experimentally observed rates of protein folding and unfolding.
@article{MBB_2008_3_a4,
     author = {N. S. Bogatyreva and D. N. Ivankov and M. Yu. Lobanov and O. V. Galzitskaya},
     title = {{\CYRS}onnection of shape of globular proteins with their folding and unfolding rates},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2008_3_a4/}
}
TY  - JOUR
AU  - N. S. Bogatyreva
AU  - D. N. Ivankov
AU  - M. Yu. Lobanov
AU  - O. V. Galzitskaya
TI  - Сonnection of shape of globular proteins with their folding and unfolding rates
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2008
SP  - 69
EP  - 78
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2008_3_a4/
LA  - ru
ID  - MBB_2008_3_a4
ER  - 
%0 Journal Article
%A N. S. Bogatyreva
%A D. N. Ivankov
%A M. Yu. Lobanov
%A O. V. Galzitskaya
%T Сonnection of shape of globular proteins with their folding and unfolding rates
%J Matematičeskaâ biologiâ i bioinformatika
%D 2008
%P 69-78
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2008_3_a4/
%G ru
%F MBB_2008_3_a4
N. S. Bogatyreva; D. N. Ivankov; M. Yu. Lobanov; O. V. Galzitskaya. Сonnection of shape of globular proteins with their folding and unfolding rates. Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008), pp. 69-78. http://geodesic.mathdoc.fr/item/MBB_2008_3_a4/

[1] Chiti F., Dobson C. M., “Protein misfolding, functional amyloid, and human disease”, Annu. Rev. Biochem., 75 (2006), 333–366 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.biochem.75.101304.123901'>10.1146/annurev.biochem.75.101304.123901</ext-link>

[2] Jackson S. E., “How do small single-domain proteins fold?”, Fold. Des., 3:4 (1998), R81–R91 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1359-0278(98)00033-9'>10.1016/S1359-0278(98)00033-9</ext-link>

[3] Finkelshtein A. V., Badretdinov A. Ya., “Fizicheskie prichiny bystroi samoorganizatsii stabilnoi prostranstvennoi struktury belkov: reshenie paradoksa Levintalya”, Mol. biologiya, 31 (1997), 469–477

[4] Levinthal C., “Are there pathways for protein folding?”, J. Chim. Phys. Chim. Biol., 65 (1968), 44–45

[5] Gutin A. M., Abkevich V. I., Shakhnovich E. I., “Chain length scaling of protein folding time”, Phys. Rev. Lett., 77:27 (1996), 5433–5456 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.77.5433'>10.1103/PhysRevLett.77.5433</ext-link>

[6] Thirumalai D., “From minimal models to real proteins: time scales for protein folding kinetics”, Journal de Physique Orsay Fr., 5 (1995), 1457–1467 <ext-link ext-link-type='doi' href='https://doi.org/10.1051/jp1:1995209'>10.1051/jp1:1995209</ext-link>

[7] Koga N., Takada S., “Roles of native topology and chain-length scaling in protein folding: a simulation study with a G$\bar{\mathrm o}$-like model”, J. Mol. Biol., 313:1 (2001), 171–180 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.2001.5037'>10.1006/jmbi.2001.5037</ext-link>

[8] Finkelstein A. V., Galzitskaya O. V., “Physics of protein folding”, Phys. Life Rev., 1:1 (2004), 23–56 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.plrev.2004.03.001'>10.1016/j.plrev.2004.03.001</ext-link>

[9] Galzitskaia O. V., Ivankov D. N., Finkelstein A. V., “Folding nuclei in proteins”, FEBS Lett., 489:2–3 (2001), 113–118 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0014-5793(01)02092-0'>10.1016/S0014-5793(01)02092-0</ext-link>

[10] Galzitskaya O. V., Garbuzynskiy S. O., Ivankov D. N., Finkelstein A. V., “Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics”, Proteins, 51:2 (2003), 162–166 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.10343'>10.1002/prot.10343</ext-link>

[11] Fersht A. R., “Nucleation mechanisms in protein folding”, Curr. Opin. Struct. Biol., 7:1 (1997), 3–9 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0959-440X(97)80002-4'>10.1016/S0959-440X(97)80002-4</ext-link>

[12] Plaxco K. W., Simons K. T., Baker D., “Contact order, transition state placement and the refolding rates of single domain proteins”, J. Mol. Biol., 277:4 (1998), 985–994 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1998.1645'>10.1006/jmbi.1998.1645</ext-link>

[13] Plaxco K. W., Guijarro J. I., Morton C. J., Pitkeathly M., Campbell I. D., Dobson C. M., “The folding kinetics and thermodynamics of the Fyn-SH3 domain”, Biochemistry, 37:8 (1998), 2529–2537 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi972075u'>10.1021/bi972075u</ext-link>

[14] Guijarro J. I., Morton C. J., Plaxco K. W., Campbell I. D., Dobson C. M., “Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy”, J. of. Biol., 276:3 (1998), 657–667 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1997.1553'>10.1006/jmbi.1997.1553</ext-link>

[15] Zerovnik E., Virden R., Jerala R., Turk V., Waltho J. P. of human stefin B folding: I. Comparison to homologous stefin A. Influence of pH and trifluoroethanol on the fast and slow folding phases, Proteins, 32:3 (1998), 296–303 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/(SICI)1097-0134(19980815)32:3&lt;296::AID-PROT5&gt;3.0.CO;2-G'>10.1002/(SICI)1097-0134(19980815)32:3&lt;296::AID-PROT5&gt;3.0.CO;2-G</ext-link>

[16] Perl D., Welker C., Schindler T., Schroder K., Marahiel M. A., Jaenicke R., Schmid F. X., “Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins”, Nat. Struct. Biol., 5:3 (1998), 229–235 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nsb0398-229'>10.1038/nsb0398-229</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=756163'>756163</ext-link>

[17] van Nuland N. A., Chiti F., Taddei N., Raugei G., Ramponi G., Dobson C. M., “Slow folding of muscle acylphosphatase in the absence of intermediates”, J. Mol. Biol., 283:4 (1998), 883–891 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.1998.2009'>10.1006/jmbi.1998.2009</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1671905'>1671905</ext-link>

[18] Ivankov D. N., Garbuzynskiy S. O., Alm E., Plaxco K. W., Baker D., Finkelstein A. V., “Contact order revisited: influence of protein size on the folding rate”, Protein Sci., 12:9 (2003), 2057–2062 <ext-link ext-link-type='doi' href='https://doi.org/10.1110/ps.0302503'>10.1110/ps.0302503</ext-link>

[19] Punta M., Rost B., “Protein folding rates estimated from contact predictions”, J. Mol. Biol., 348:3 (2005), 507–512 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmb.2005.02.068'>10.1016/j.jmb.2005.02.068</ext-link>

[20] Ivankov D. N., Finkelstein A. V., “Prediction of protein folding rates from the amino acid sequence-predicted secondary structure”, Proc. Natl. Acad. Sci. USA, 101:24 (2004), 8942–8944 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0402659101'>10.1073/pnas.0402659101</ext-link>

[21] Zhou H., Zhou Y., “Folding rate prediction using total contact distance”, Biophys. J., 82:1 (2002), 458–463, Pt 1 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0006-3495(02)75410-6'>10.1016/S0006-3495(02)75410-6</ext-link>

[22] Gong H., Isom D. G., Srinivasan R., Rose G. D., “Local secondary structure content predicts folding rates for simple, two-state proteins”, J. Mol. Biol., 327:5 (2003), 1149–1154 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0022-2836(03)00211-0'>10.1016/S0022-2836(03)00211-0</ext-link>

[23] Capriotti E., Casadio R., “K-Fold: a tool for the prediction of the protein folding kinetic order and rate”, Bioinformatics, 23:3 (2007), 385–386 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btl610'>10.1093/bioinformatics/btl610</ext-link>

[24] Gromiha M. M., Thangakani A. M., Selvaraj S., “FOLD-RATE: prediction of protein folding rates from amino acid sequence”, Nucleic Acids Res., 34 (2006), W70–W74 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkl043'>10.1093/nar/gkl043</ext-link>

[25] Gromiha M. M., Selvaraj S., “Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction”, J. Mol. Biol., 310:1 (2001), 27–32 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmbi.2001.4775'>10.1006/jmbi.2001.4775</ext-link>

[26] Ma B. G., Chen L. L., Zhang H. Y., “What determines protein folding type? An investigation of intrinsic structural properties and its implications for understanding folding mechanisms”, J. Mol. Biol., 370:3 (2007), 439–448 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmb.2007.04.051'>10.1016/j.jmb.2007.04.051</ext-link>

[27] Makarov D. E., Keller C. A., Plaxco K. W., Metiu H., “How the folding rate constant of simple, single-domain proteins depends on the number of native contacts”, Proc. Natl. Acad. Sci. USA, 99:6 (2002), 3535–3539 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.052713599'>10.1073/pnas.052713599</ext-link>

[28] Gromiha M. M., “A statistical model for predicting protein folding rates from amino acid sequence with structural class information”, J. Chem. Inf. Model., 45:2 (2005), 494–501 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ci049757q'>10.1021/ci049757q</ext-link>

[29] Galzitskaya O. V., Bogatyreva N. S., Ivankov D. N., “Compactness determines protein folding type”, J. Bioinform Comput Biol., 6:4 (2008), 667–680 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0219720008003618'>10.1142/S0219720008003618</ext-link>

[30] Krieger E., Koraimann G., Vriend G., “Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field”, Proteins, 47:3 (2002), 393–402 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.10104'>10.1002/prot.10104</ext-link>

[31] Murzin A. G., Brenner S. E., Hubbard T., Chothia C., “SCOP: a structural classification of proteins database for the investigation of sequences and structures”, J. Mol. Biol., 247:4 (1995), 536–540

[32] Wetlaufer D. B., “Nucleation, rapid folding, and globular intrachain regions in proteins”, Proc. Natl. Acad. Sci. USA, 70:3 (1973), 697–701 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.70.3.697'>10.1073/pnas.70.3.697</ext-link>

[33] Richards F. M., “Areas, volumes, packing and protein structure”, Annu. Rev. Biophys. Bioeng., 6 (1977), 151–76 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.bb.06.060177.001055'>10.1146/annurev.bb.06.060177.001055</ext-link>

[34] Wodak S. J., Janin J., “Location of structural domains in protein”, Biochemistry, 20:23 (1981), 6544–6552 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi00526a005'>10.1021/bi00526a005</ext-link>

[35] Zehfus M. H., Rose G. D., “Compact units in proteins”, Biochemistry, 25:19 (1986), 5759–5765 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/bi00367a062'>10.1021/bi00367a062</ext-link>

[36] Tsai C. J., Nussinov R., “Hydrophobic folding units at protein-protein interfaces: implications to protein folding and to protein-protein association”, Protein Sci., 6:7 (1997), 1426–1437 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/pro.5560060707'>10.1002/pro.5560060707</ext-link>

[37] Bogatyreva N. S., Osypov A. A., Ivankov D. N., “KineticDB: a database of protein folding kinetics”, Nucleic Acids Res., 2009 (to appear)