Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2008_3_2_a4, author = {N. S. Bogatyreva and D. N. Ivankov and M. Yu. Lobanov and O. V. Galzitskaya}, title = {{\CYRS}onnection of shape of globular proteins with their folding and unfolding rates}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {69--78}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a4/} }
TY - JOUR AU - N. S. Bogatyreva AU - D. N. Ivankov AU - M. Yu. Lobanov AU - O. V. Galzitskaya TI - Сonnection of shape of globular proteins with their folding and unfolding rates JO - Matematičeskaâ biologiâ i bioinformatika PY - 2008 SP - 69 EP - 78 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a4/ LA - ru ID - MBB_2008_3_2_a4 ER -
%0 Journal Article %A N. S. Bogatyreva %A D. N. Ivankov %A M. Yu. Lobanov %A O. V. Galzitskaya %T Сonnection of shape of globular proteins with their folding and unfolding rates %J Matematičeskaâ biologiâ i bioinformatika %D 2008 %P 69-78 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a4/ %G ru %F MBB_2008_3_2_a4
N. S. Bogatyreva; D. N. Ivankov; M. Yu. Lobanov; O. V. Galzitskaya. Сonnection of shape of globular proteins with their folding and unfolding rates. Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a4/
[1] Chiti F., Dobson C. M., “Protein misfolding, functional amyloid, and human disease”, Annu. Rev. Biochem., 75 (2006), 333–366 | DOI
[2] Jackson S. E., “How do small single-domain proteins fold?”, Fold. Des., 3:4 (1998), R81–R91 | DOI
[3] Finkelshtein A. V., Badretdinov A. Ya., “Fizicheskie prichiny bystroi samoorganizatsii stabilnoi prostranstvennoi struktury belkov: reshenie paradoksa Levintalya”, Mol. biologiya, 31 (1997), 469–477
[4] Levinthal C., “Are there pathways for protein folding?”, J. Chim. Phys. Chim. Biol., 65 (1968), 44–45
[5] Gutin A. M., Abkevich V. I., Shakhnovich E. I., “Chain length scaling of protein folding time”, Phys. Rev. Lett., 77:27 (1996), 5433–5456 | DOI
[6] Thirumalai D., “From minimal models to real proteins: time scales for protein folding kinetics”, Journal de Physique Orsay Fr., 5 (1995), 1457–1467 | DOI
[7] Koga N., Takada S., “Roles of native topology and chain-length scaling in protein folding: a simulation study with a G$\bar{\mathrm o}$-like model”, J. Mol. Biol., 313:1 (2001), 171–180 | DOI
[8] Finkelstein A. V., Galzitskaya O. V., “Physics of protein folding”, Phys. Life Rev., 1:1 (2004), 23–56 | DOI
[9] Galzitskaia O. V., Ivankov D. N., Finkelstein A. V., “Folding nuclei in proteins”, FEBS Lett., 489:2–3 (2001), 113–118 | DOI
[10] Galzitskaya O. V., Garbuzynskiy S. O., Ivankov D. N., Finkelstein A. V., “Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics”, Proteins, 51:2 (2003), 162–166 | DOI
[11] Fersht A. R., “Nucleation mechanisms in protein folding”, Curr. Opin. Struct. Biol., 7:1 (1997), 3–9 | DOI
[12] Plaxco K. W., Simons K. T., Baker D., “Contact order, transition state placement and the refolding rates of single domain proteins”, J. Mol. Biol., 277:4 (1998), 985–994 | DOI
[13] Plaxco K. W., Guijarro J. I., Morton C. J., Pitkeathly M., Campbell I. D., Dobson C. M., “The folding kinetics and thermodynamics of the Fyn-SH3 domain”, Biochemistry, 37:8 (1998), 2529–2537 | DOI
[14] Guijarro J. I., Morton C. J., Plaxco K. W., Campbell I. D., Dobson C. M., “Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy”, J. of. Biol., 276:3 (1998), 657–667 | DOI
[15] Zerovnik E., Virden R., Jerala R., Turk V., Waltho J. P. of human stefin B folding: I. Comparison to homologous stefin A. Influence of pH and trifluoroethanol on the fast and slow folding phases, Proteins, 32:3 (1998), 296–303 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[16] Perl D., Welker C., Schindler T., Schroder K., Marahiel M. A., Jaenicke R., Schmid F. X., “Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins”, Nat. Struct. Biol., 5:3 (1998), 229–235 | DOI | MR
[17] van Nuland N. A., Chiti F., Taddei N., Raugei G., Ramponi G., Dobson C. M., “Slow folding of muscle acylphosphatase in the absence of intermediates”, J. Mol. Biol., 283:4 (1998), 883–891 | DOI | MR
[18] Ivankov D. N., Garbuzynskiy S. O., Alm E., Plaxco K. W., Baker D., Finkelstein A. V., “Contact order revisited: influence of protein size on the folding rate”, Protein Sci., 12:9 (2003), 2057–2062 | DOI
[19] Punta M., Rost B., “Protein folding rates estimated from contact predictions”, J. Mol. Biol., 348:3 (2005), 507–512 | DOI
[20] Ivankov D. N., Finkelstein A. V., “Prediction of protein folding rates from the amino acid sequence-predicted secondary structure”, Proc. Natl. Acad. Sci. USA, 101:24 (2004), 8942–8944 | DOI
[21] Zhou H., Zhou Y., “Folding rate prediction using total contact distance”, Biophys. J., 82:1 (2002), 458–463, Pt 1 | DOI
[22] Gong H., Isom D. G., Srinivasan R., Rose G. D., “Local secondary structure content predicts folding rates for simple, two-state proteins”, J. Mol. Biol., 327:5 (2003), 1149–1154 | DOI
[23] Capriotti E., Casadio R., “K-Fold: a tool for the prediction of the protein folding kinetic order and rate”, Bioinformatics, 23:3 (2007), 385–386 | DOI
[24] Gromiha M. M., Thangakani A. M., Selvaraj S., “FOLD-RATE: prediction of protein folding rates from amino acid sequence”, Nucleic Acids Res., 34 (2006), W70–W74 | DOI
[25] Gromiha M. M., Selvaraj S., “Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction”, J. Mol. Biol., 310:1 (2001), 27–32 | DOI
[26] Ma B. G., Chen L. L., Zhang H. Y., “What determines protein folding type? An investigation of intrinsic structural properties and its implications for understanding folding mechanisms”, J. Mol. Biol., 370:3 (2007), 439–448 | DOI
[27] Makarov D. E., Keller C. A., Plaxco K. W., Metiu H., “How the folding rate constant of simple, single-domain proteins depends on the number of native contacts”, Proc. Natl. Acad. Sci. USA, 99:6 (2002), 3535–3539 | DOI
[28] Gromiha M. M., “A statistical model for predicting protein folding rates from amino acid sequence with structural class information”, J. Chem. Inf. Model., 45:2 (2005), 494–501 | DOI
[29] Galzitskaya O. V., Bogatyreva N. S., Ivankov D. N., “Compactness determines protein folding type”, J. Bioinform Comput Biol., 6:4 (2008), 667–680 | DOI
[30] Krieger E., Koraimann G., Vriend G., “Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field”, Proteins, 47:3 (2002), 393–402 | DOI
[31] Murzin A. G., Brenner S. E., Hubbard T., Chothia C., “SCOP: a structural classification of proteins database for the investigation of sequences and structures”, J. Mol. Biol., 247:4 (1995), 536–540
[32] Wetlaufer D. B., “Nucleation, rapid folding, and globular intrachain regions in proteins”, Proc. Natl. Acad. Sci. USA, 70:3 (1973), 697–701 | DOI
[33] Richards F. M., “Areas, volumes, packing and protein structure”, Annu. Rev. Biophys. Bioeng., 6 (1977), 151–76 | DOI
[34] Wodak S. J., Janin J., “Location of structural domains in protein”, Biochemistry, 20:23 (1981), 6544–6552 | DOI
[35] Zehfus M. H., Rose G. D., “Compact units in proteins”, Biochemistry, 25:19 (1986), 5759–5765 | DOI
[36] Tsai C. J., Nussinov R., “Hydrophobic folding units at protein-protein interfaces: implications to protein folding and to protein-protein association”, Protein Sci., 6:7 (1997), 1426–1437 | DOI
[37] Bogatyreva N. S., Osypov A. A., Ivankov D. N., “KineticDB: a database of protein folding kinetics”, Nucleic Acids Res., 2009 (to appear)