Сonnection of shape of globular proteins with their folding and unfolding rates
Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008) no. 2, pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of protein self-organization is one of the most important problems of molecular biology nowadays. Despite the recent success in understanding general principles of protein folding, details of this process is yet to be elucidated. That is why the search for the factors influencing protein folding kinetics is going on. We check in this study the hypothesis that more spherical proteins should fold more slowly than elongated ones. To this aim we analyze a number of structural determinants, designed for description protein shape, as well as their relationship with rates of protein folding and unfolding. We show here that dimensionless structural parameters describing protein shape have low correlation with protein folding and unfolding rates. At the same time structural determinants taking into account both protein shape and its size show good agreement with experimentally observed rates of protein folding and unfolding.
@article{MBB_2008_3_2_a4,
     author = {N. S. Bogatyreva and D. N. Ivankov and M. Yu. Lobanov and O. V. Galzitskaya},
     title = {{\CYRS}onnection of shape of globular proteins with their folding and unfolding rates},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a4/}
}
TY  - JOUR
AU  - N. S. Bogatyreva
AU  - D. N. Ivankov
AU  - M. Yu. Lobanov
AU  - O. V. Galzitskaya
TI  - Сonnection of shape of globular proteins with their folding and unfolding rates
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2008
SP  - 69
EP  - 78
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a4/
LA  - ru
ID  - MBB_2008_3_2_a4
ER  - 
%0 Journal Article
%A N. S. Bogatyreva
%A D. N. Ivankov
%A M. Yu. Lobanov
%A O. V. Galzitskaya
%T Сonnection of shape of globular proteins with their folding and unfolding rates
%J Matematičeskaâ biologiâ i bioinformatika
%D 2008
%P 69-78
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a4/
%G ru
%F MBB_2008_3_2_a4
N. S. Bogatyreva; D. N. Ivankov; M. Yu. Lobanov; O. V. Galzitskaya. Сonnection of shape of globular proteins with their folding and unfolding rates. Matematičeskaâ biologiâ i bioinformatika, Tome 3 (2008) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/MBB_2008_3_2_a4/

[1] Chiti F., Dobson C. M., “Protein misfolding, functional amyloid, and human disease”, Annu. Rev. Biochem., 75 (2006), 333–366 | DOI

[2] Jackson S. E., “How do small single-domain proteins fold?”, Fold. Des., 3:4 (1998), R81–R91 | DOI

[3] Finkelshtein A. V., Badretdinov A. Ya., “Fizicheskie prichiny bystroi samoorganizatsii stabilnoi prostranstvennoi struktury belkov: reshenie paradoksa Levintalya”, Mol. biologiya, 31 (1997), 469–477

[4] Levinthal C., “Are there pathways for protein folding?”, J. Chim. Phys. Chim. Biol., 65 (1968), 44–45

[5] Gutin A. M., Abkevich V. I., Shakhnovich E. I., “Chain length scaling of protein folding time”, Phys. Rev. Lett., 77:27 (1996), 5433–5456 | DOI

[6] Thirumalai D., “From minimal models to real proteins: time scales for protein folding kinetics”, Journal de Physique Orsay Fr., 5 (1995), 1457–1467 | DOI

[7] Koga N., Takada S., “Roles of native topology and chain-length scaling in protein folding: a simulation study with a G$\bar{\mathrm o}$-like model”, J. Mol. Biol., 313:1 (2001), 171–180 | DOI

[8] Finkelstein A. V., Galzitskaya O. V., “Physics of protein folding”, Phys. Life Rev., 1:1 (2004), 23–56 | DOI

[9] Galzitskaia O. V., Ivankov D. N., Finkelstein A. V., “Folding nuclei in proteins”, FEBS Lett., 489:2–3 (2001), 113–118 | DOI

[10] Galzitskaya O. V., Garbuzynskiy S. O., Ivankov D. N., Finkelstein A. V., “Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics”, Proteins, 51:2 (2003), 162–166 | DOI

[11] Fersht A. R., “Nucleation mechanisms in protein folding”, Curr. Opin. Struct. Biol., 7:1 (1997), 3–9 | DOI

[12] Plaxco K. W., Simons K. T., Baker D., “Contact order, transition state placement and the refolding rates of single domain proteins”, J. Mol. Biol., 277:4 (1998), 985–994 | DOI

[13] Plaxco K. W., Guijarro J. I., Morton C. J., Pitkeathly M., Campbell I. D., Dobson C. M., “The folding kinetics and thermodynamics of the Fyn-SH3 domain”, Biochemistry, 37:8 (1998), 2529–2537 | DOI

[14] Guijarro J. I., Morton C. J., Plaxco K. W., Campbell I. D., Dobson C. M., “Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy”, J. of. Biol., 276:3 (1998), 657–667 | DOI

[15] Zerovnik E., Virden R., Jerala R., Turk V., Waltho J. P. of human stefin B folding: I. Comparison to homologous stefin A. Influence of pH and trifluoroethanol on the fast and slow folding phases, Proteins, 32:3 (1998), 296–303 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[16] Perl D., Welker C., Schindler T., Schroder K., Marahiel M. A., Jaenicke R., Schmid F. X., “Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins”, Nat. Struct. Biol., 5:3 (1998), 229–235 | DOI | MR

[17] van Nuland N. A., Chiti F., Taddei N., Raugei G., Ramponi G., Dobson C. M., “Slow folding of muscle acylphosphatase in the absence of intermediates”, J. Mol. Biol., 283:4 (1998), 883–891 | DOI | MR

[18] Ivankov D. N., Garbuzynskiy S. O., Alm E., Plaxco K. W., Baker D., Finkelstein A. V., “Contact order revisited: influence of protein size on the folding rate”, Protein Sci., 12:9 (2003), 2057–2062 | DOI

[19] Punta M., Rost B., “Protein folding rates estimated from contact predictions”, J. Mol. Biol., 348:3 (2005), 507–512 | DOI

[20] Ivankov D. N., Finkelstein A. V., “Prediction of protein folding rates from the amino acid sequence-predicted secondary structure”, Proc. Natl. Acad. Sci. USA, 101:24 (2004), 8942–8944 | DOI

[21] Zhou H., Zhou Y., “Folding rate prediction using total contact distance”, Biophys. J., 82:1 (2002), 458–463, Pt 1 | DOI

[22] Gong H., Isom D. G., Srinivasan R., Rose G. D., “Local secondary structure content predicts folding rates for simple, two-state proteins”, J. Mol. Biol., 327:5 (2003), 1149–1154 | DOI

[23] Capriotti E., Casadio R., “K-Fold: a tool for the prediction of the protein folding kinetic order and rate”, Bioinformatics, 23:3 (2007), 385–386 | DOI

[24] Gromiha M. M., Thangakani A. M., Selvaraj S., “FOLD-RATE: prediction of protein folding rates from amino acid sequence”, Nucleic Acids Res., 34 (2006), W70–W74 | DOI

[25] Gromiha M. M., Selvaraj S., “Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction”, J. Mol. Biol., 310:1 (2001), 27–32 | DOI

[26] Ma B. G., Chen L. L., Zhang H. Y., “What determines protein folding type? An investigation of intrinsic structural properties and its implications for understanding folding mechanisms”, J. Mol. Biol., 370:3 (2007), 439–448 | DOI

[27] Makarov D. E., Keller C. A., Plaxco K. W., Metiu H., “How the folding rate constant of simple, single-domain proteins depends on the number of native contacts”, Proc. Natl. Acad. Sci. USA, 99:6 (2002), 3535–3539 | DOI

[28] Gromiha M. M., “A statistical model for predicting protein folding rates from amino acid sequence with structural class information”, J. Chem. Inf. Model., 45:2 (2005), 494–501 | DOI

[29] Galzitskaya O. V., Bogatyreva N. S., Ivankov D. N., “Compactness determines protein folding type”, J. Bioinform Comput Biol., 6:4 (2008), 667–680 | DOI

[30] Krieger E., Koraimann G., Vriend G., “Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field”, Proteins, 47:3 (2002), 393–402 | DOI

[31] Murzin A. G., Brenner S. E., Hubbard T., Chothia C., “SCOP: a structural classification of proteins database for the investigation of sequences and structures”, J. Mol. Biol., 247:4 (1995), 536–540

[32] Wetlaufer D. B., “Nucleation, rapid folding, and globular intrachain regions in proteins”, Proc. Natl. Acad. Sci. USA, 70:3 (1973), 697–701 | DOI

[33] Richards F. M., “Areas, volumes, packing and protein structure”, Annu. Rev. Biophys. Bioeng., 6 (1977), 151–76 | DOI

[34] Wodak S. J., Janin J., “Location of structural domains in protein”, Biochemistry, 20:23 (1981), 6544–6552 | DOI

[35] Zehfus M. H., Rose G. D., “Compact units in proteins”, Biochemistry, 25:19 (1986), 5759–5765 | DOI

[36] Tsai C. J., Nussinov R., “Hydrophobic folding units at protein-protein interfaces: implications to protein folding and to protein-protein association”, Protein Sci., 6:7 (1997), 1426–1437 | DOI

[37] Bogatyreva N. S., Osypov A. A., Ivankov D. N., “KineticDB: a database of protein folding kinetics”, Nucleic Acids Res., 2009 (to appear)