Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions
Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007), pp. 377-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the Boolean network modelling the cell division cycle of fission yeast Schizosaccharomyces pombe. The analysis of its dynamics shows that this model is robust correspondingly to the initial value disturbances. The detailed consideration of the conditions leading to both biological path and lethal mutations is provided.
@article{MBB_2007_2_a4,
     author = {M. I. Davidich and E. B. Postnikov},
     title = {Boolean model of fission yeast {Schizosaccharomyces} pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {377--386},
     publisher = {mathdoc},
     volume = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_a4/}
}
TY  - JOUR
AU  - M. I. Davidich
AU  - E. B. Postnikov
TI  - Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2007
SP  - 377
EP  - 386
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2007_2_a4/
LA  - ru
ID  - MBB_2007_2_a4
ER  - 
%0 Journal Article
%A M. I. Davidich
%A E. B. Postnikov
%T Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions
%J Matematičeskaâ biologiâ i bioinformatika
%D 2007
%P 377-386
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2007_2_a4/
%G ru
%F MBB_2007_2_a4
M. I. Davidich; E. B. Postnikov. Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007), pp. 377-386. http://geodesic.mathdoc.fr/item/MBB_2007_2_a4/

[1] Klipp E., Herwig R., Kowald A., Wierling C., Lehrach H., Systems Biology in Practice: Concepts, Implementation and Application, Wiley-VCH, 2005

[2] Hasty J., McMillen D., Isaacs F., Collins J. J., “Computational studies of gene regulatory networks: in numero molecular biology”, Nat. Rev. Genet., 2 (2001), 268–279 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35066056'>10.1038/35066056</ext-link>

[3] Riel N. A. W., “Dynamic modelling and analysis of biochemical networks: mechanismbased models and model-based experiments”, Briefings in Bioinformatics, 7:4 (2006), 364–374 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bib/bbl040'>10.1093/bib/bbl040</ext-link>

[4] Smolen P., Baxter D. A., Byrne J. H., “Mathematical modeling of gene networks”, Neuron., 26 (2000), 567–580 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0896-6273(00)81194-0'>10.1016/S0896-6273(00)81194-0</ext-link>

[5] Aguda B. D., “Modeling the Cell Division Cycle”, Lect. Notes Math., 1872, 2006, 1–22 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2216626'>2216626</ext-link>

[6] Tyson J. J., Chen K. C., Novak B., “Network dynamics and cell physiology”, Nature Rev. Mol. Cell. Biol., 2 (2001), 908–916 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35103078'>10.1038/35103078</ext-link>

[7] Braunewell S., Bornholdt S., “Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity”, J. Theor. Biol., 245:4 (2006), 638–643 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2006.11.012'>10.1016/j.jtbi.2006.11.012</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2295870'>2295870</ext-link>

[8] Albert R., Othmer H. G., “The topology of the regulatory interactions predicts the expression pattern of the Drosophila segment polarity genes”, J. Theor. Biol., 223:1 (2003), 1–18 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0022-5193(03)00035-3'>10.1016/S0022-5193(03)00035-3</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2069236'>2069236</ext-link>

[9] Espinosa-Soto C., Padilla-Longoria P., Alvarez-Buylla E. R., “A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles”, Plant Cell., 16 (2004), 2923–2939 <ext-link ext-link-type='doi' href='https://doi.org/10.1105/tpc.104.021725'>10.1105/tpc.104.021725</ext-link>

[10] Sanchez L., Thieffry D., “A logical analysis of the drosophila gap-gene system”, J. Theor. Biol., 211 (2001), 115–141 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jtbi.2001.2335'>10.1006/jtbi.2001.2335</ext-link>

[11] Genoud T., Metraux J. P., “Crosstalk in plant cell signaling: Structure and function of the genetic network”, Trends Plant Sci., 4 (1999), 503–507 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1360-1385(99)01498-3'>10.1016/S1360-1385(99)01498-3</ext-link>

[12] Mendoza L., Thieffry D., Alvarez-Buylla E. R., “Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analysis”, Bioinformatics, 15 (1999), 593–606 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/15.7.593'>10.1093/bioinformatics/15.7.593</ext-link>

[13] Thum K. E., Shasha D. E., Lejay L. V., Coruzzi G. M., “Light- and carbonsignaling pathways. Modeling circuits of interactions”, Plant Physiol., 132 (2003), 440–452 <ext-link ext-link-type='doi' href='https://doi.org/10.1104/pp.103.022780'>10.1104/pp.103.022780</ext-link>

[14] Li F., Long T., Lu Y., Quyang Q., Tang C., “The yeast cell-cycle network is robustly designed”, PNAS, 101:14 (2004), 4781–4786 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0305937101'>10.1073/pnas.0305937101</ext-link>

[15] Faure A., Naldi A., Chaouiya C., Thieffry D., “Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle”, Bioinformatics, 22:14 (2006), 124–131 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btl210'>10.1093/bioinformatics/btl210</ext-link>

[16] Gunsalus K. C., Ge H., Schetter A. J., Goldberg D. S., Han J.-D. J. et al., “Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis”, Nature, 436:11 (2005), 861–865 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature03876'>10.1038/nature03876</ext-link>

[17] Forsburg S. L., “The best yeast?”, Trends in Genetics, 15:9 (1999), 340–344 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0168-9525(99)01798-9'>10.1016/S0168-9525(99)01798-9</ext-link>

[18] Novak B., Tyson J. J., “Modeling the control of DNA replication in fission yeast”, PNAS, 94 (1997), 9147–9152 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.94.17.9147'>10.1073/pnas.94.17.9147</ext-link>

[19] Novak B., Pataki Z., Ciliberto A., Tyson J. J., “Mathematical model of the cell division cycle of fission yeast”, Chaos, 11:1 (2001), 277–286 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1345725'>10.1063/1.1345725</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0992.92022'>0992.92022</ext-link>

[20] Tyson J. J., Csikasz-Nagy A., Novak B., “The dynamics of the cell-cycle regulation”, BioEssays, 24 (2002), 1095–1109 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/bies.10191'>10.1002/bies.10191</ext-link>

[21] Davidich M. I., Bornholt S., Boolean network model predicts cell cycle sequence of fission yeast, , (Submitted to PLoS ONE) <ext-link ext-link-type='uri' href='http://www.arxiv.org/abs/0704.2200'>http://www.arxiv.org/abs/0704.2200</ext-link>

[22] Furnari B., Rhind N., Russell P., “Cdc25 Mitotic Inducer Targeted by Chk1 DNA Damage Checkpoint Kinase”, Science, 227:5331 (1997), 1495–1497 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.277.5331.1495'>10.1126/science.277.5331.1495</ext-link>

[23] Kim S. H., Lin D. P., Matsumoto S., Kitazono A., Matsumoto T., “Fission Yeast Slp1: An Effector of the Mad2-Dependent Spindle Checkpoint”, Science, 279:5353 (1998), 1045–1047 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.279.5353.1045'>10.1126/science.279.5353.1045</ext-link>

[24] Moreno S., Nurse P., “Regulation of progression through the $G_1$ phase of the cell cycle by the ruml$^+$ gene”, Nature, 367 (1994), 236–242 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/367236a0'>10.1038/367236a0</ext-link>

[25] Chunhui C., Network Dynamics of Budding Yeast Cell Cycle, Diss. B.Sc., Baptist University, Hong Kong, 2005