Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2007_2_a4, author = {M. I. Davidich and E. B. Postnikov}, title = {Boolean model of fission yeast {Schizosaccharomyces} pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {377--386}, publisher = {mathdoc}, volume = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_a4/} }
TY - JOUR AU - M. I. Davidich AU - E. B. Postnikov TI - Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions JO - Matematičeskaâ biologiâ i bioinformatika PY - 2007 SP - 377 EP - 386 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2007_2_a4/ LA - ru ID - MBB_2007_2_a4 ER -
%0 Journal Article %A M. I. Davidich %A E. B. Postnikov %T Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions %J Matematičeskaâ biologiâ i bioinformatika %D 2007 %P 377-386 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2007_2_a4/ %G ru %F MBB_2007_2_a4
M. I. Davidich; E. B. Postnikov. Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007), pp. 377-386. http://geodesic.mathdoc.fr/item/MBB_2007_2_a4/
[1] Klipp E., Herwig R., Kowald A., Wierling C., Lehrach H., Systems Biology in Practice: Concepts, Implementation and Application, Wiley-VCH, 2005
[2] Hasty J., McMillen D., Isaacs F., Collins J. J., “Computational studies of gene regulatory networks: in numero molecular biology”, Nat. Rev. Genet., 2 (2001), 268–279 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35066056'>10.1038/35066056</ext-link>
[3] Riel N. A. W., “Dynamic modelling and analysis of biochemical networks: mechanismbased models and model-based experiments”, Briefings in Bioinformatics, 7:4 (2006), 364–374 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bib/bbl040'>10.1093/bib/bbl040</ext-link>
[4] Smolen P., Baxter D. A., Byrne J. H., “Mathematical modeling of gene networks”, Neuron., 26 (2000), 567–580 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0896-6273(00)81194-0'>10.1016/S0896-6273(00)81194-0</ext-link>
[5] Aguda B. D., “Modeling the Cell Division Cycle”, Lect. Notes Math., 1872, 2006, 1–22 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2216626'>2216626</ext-link>
[6] Tyson J. J., Chen K. C., Novak B., “Network dynamics and cell physiology”, Nature Rev. Mol. Cell. Biol., 2 (2001), 908–916 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35103078'>10.1038/35103078</ext-link>
[7] Braunewell S., Bornholdt S., “Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity”, J. Theor. Biol., 245:4 (2006), 638–643 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2006.11.012'>10.1016/j.jtbi.2006.11.012</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2295870'>2295870</ext-link>
[8] Albert R., Othmer H. G., “The topology of the regulatory interactions predicts the expression pattern of the Drosophila segment polarity genes”, J. Theor. Biol., 223:1 (2003), 1–18 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0022-5193(03)00035-3'>10.1016/S0022-5193(03)00035-3</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2069236'>2069236</ext-link>
[9] Espinosa-Soto C., Padilla-Longoria P., Alvarez-Buylla E. R., “A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles”, Plant Cell., 16 (2004), 2923–2939 <ext-link ext-link-type='doi' href='https://doi.org/10.1105/tpc.104.021725'>10.1105/tpc.104.021725</ext-link>
[10] Sanchez L., Thieffry D., “A logical analysis of the drosophila gap-gene system”, J. Theor. Biol., 211 (2001), 115–141 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jtbi.2001.2335'>10.1006/jtbi.2001.2335</ext-link>
[11] Genoud T., Metraux J. P., “Crosstalk in plant cell signaling: Structure and function of the genetic network”, Trends Plant Sci., 4 (1999), 503–507 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1360-1385(99)01498-3'>10.1016/S1360-1385(99)01498-3</ext-link>
[12] Mendoza L., Thieffry D., Alvarez-Buylla E. R., “Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analysis”, Bioinformatics, 15 (1999), 593–606 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/15.7.593'>10.1093/bioinformatics/15.7.593</ext-link>
[13] Thum K. E., Shasha D. E., Lejay L. V., Coruzzi G. M., “Light- and carbonsignaling pathways. Modeling circuits of interactions”, Plant Physiol., 132 (2003), 440–452 <ext-link ext-link-type='doi' href='https://doi.org/10.1104/pp.103.022780'>10.1104/pp.103.022780</ext-link>
[14] Li F., Long T., Lu Y., Quyang Q., Tang C., “The yeast cell-cycle network is robustly designed”, PNAS, 101:14 (2004), 4781–4786 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0305937101'>10.1073/pnas.0305937101</ext-link>
[15] Faure A., Naldi A., Chaouiya C., Thieffry D., “Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle”, Bioinformatics, 22:14 (2006), 124–131 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btl210'>10.1093/bioinformatics/btl210</ext-link>
[16] Gunsalus K. C., Ge H., Schetter A. J., Goldberg D. S., Han J.-D. J. et al., “Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis”, Nature, 436:11 (2005), 861–865 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nature03876'>10.1038/nature03876</ext-link>
[17] Forsburg S. L., “The best yeast?”, Trends in Genetics, 15:9 (1999), 340–344 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0168-9525(99)01798-9'>10.1016/S0168-9525(99)01798-9</ext-link>
[18] Novak B., Tyson J. J., “Modeling the control of DNA replication in fission yeast”, PNAS, 94 (1997), 9147–9152 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.94.17.9147'>10.1073/pnas.94.17.9147</ext-link>
[19] Novak B., Pataki Z., Ciliberto A., Tyson J. J., “Mathematical model of the cell division cycle of fission yeast”, Chaos, 11:1 (2001), 277–286 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1345725'>10.1063/1.1345725</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0992.92022'>0992.92022</ext-link>
[20] Tyson J. J., Csikasz-Nagy A., Novak B., “The dynamics of the cell-cycle regulation”, BioEssays, 24 (2002), 1095–1109 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/bies.10191'>10.1002/bies.10191</ext-link>
[21] Davidich M. I., Bornholt S., Boolean network model predicts cell cycle sequence of fission yeast, , (Submitted to PLoS ONE) <ext-link ext-link-type='uri' href='http://www.arxiv.org/abs/0704.2200'>http://www.arxiv.org/abs/0704.2200</ext-link>
[22] Furnari B., Rhind N., Russell P., “Cdc25 Mitotic Inducer Targeted by Chk1 DNA Damage Checkpoint Kinase”, Science, 227:5331 (1997), 1495–1497 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.277.5331.1495'>10.1126/science.277.5331.1495</ext-link>
[23] Kim S. H., Lin D. P., Matsumoto S., Kitazono A., Matsumoto T., “Fission Yeast Slp1: An Effector of the Mad2-Dependent Spindle Checkpoint”, Science, 279:5353 (1998), 1045–1047 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.279.5353.1045'>10.1126/science.279.5353.1045</ext-link>
[24] Moreno S., Nurse P., “Regulation of progression through the $G_1$ phase of the cell cycle by the ruml$^+$ gene”, Nature, 367 (1994), 236–242 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/367236a0'>10.1038/367236a0</ext-link>
[25] Chunhui C., Network Dynamics of Budding Yeast Cell Cycle, Diss. B.Sc., Baptist University, Hong Kong, 2005