Integrated mathematical model of the living cell
Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007), pp. 361-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

The informational and computational web-portal “Mathematical Cell” (http://www.mathcell.ru), which has been created by the collective body, is described. "Mathematical Cell' includes a 3D-model of the eukaryotic cell, an encyclopedia of knowledge in mathematical biology, and a collection of original models of individual cell processes. The 3D-model is furnished with browsing facilities in the internal space and connected with the informational component of the portal.
@article{MBB_2007_2_a3,
     author = {V. D. Lakhno and N. N. Nazipova and V. L. Kim and S. V. Filippov and N. S. Fialko and D. M. Ustinin and A. V. Teplukhin and G. \`E. Tyulbasheva and A. Yu. Zaitsev and M. N. Ustinin},
     title = {Integrated mathematical model of the living cell},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {361--376},
     publisher = {mathdoc},
     volume = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_a3/}
}
TY  - JOUR
AU  - V. D. Lakhno
AU  - N. N. Nazipova
AU  - V. L. Kim
AU  - S. V. Filippov
AU  - N. S. Fialko
AU  - D. M. Ustinin
AU  - A. V. Teplukhin
AU  - G. È. Tyulbasheva
AU  - A. Yu. Zaitsev
AU  - M. N. Ustinin
TI  - Integrated mathematical model of the living cell
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2007
SP  - 361
EP  - 376
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2007_2_a3/
LA  - ru
ID  - MBB_2007_2_a3
ER  - 
%0 Journal Article
%A V. D. Lakhno
%A N. N. Nazipova
%A V. L. Kim
%A S. V. Filippov
%A N. S. Fialko
%A D. M. Ustinin
%A A. V. Teplukhin
%A G. È. Tyulbasheva
%A A. Yu. Zaitsev
%A M. N. Ustinin
%T Integrated mathematical model of the living cell
%J Matematičeskaâ biologiâ i bioinformatika
%D 2007
%P 361-376
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2007_2_a3/
%G ru
%F MBB_2007_2_a3
V. D. Lakhno; N. N. Nazipova; V. L. Kim; S. V. Filippov; N. S. Fialko; D. M. Ustinin; A. V. Teplukhin; G. È. Tyulbasheva; A. Yu. Zaitsev; M. N. Ustinin. Integrated mathematical model of the living cell. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007), pp. 361-376. http://geodesic.mathdoc.fr/item/MBB_2007_2_a3/

[1] S. Grinchenko, S. Zaguskin, Mekhanizmy zhivoi kletki: algoritmicheskaya model, Nauka, M., 1989, 232 pp. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0705.73048'>0705.73048</ext-link>

[2] D. Normile, “Building Working Cells 'In Silico'”, Science, 284 (1999), 80–81

[3] R. Triendl, “Computerized role models”, Nature, 417 (2002), 7

[4] E-CELL Project Home Page, <ext-link ext-link-type='uri' href='http://www.e-cell.org/ecell/'>http://www.e-cell.org/ecell/</ext-link>

[5] Tomita M., Hashimoto K., Takahashi K., Shimizu T. S., Matsuzaki Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J. C., Hutchison C. A., “E-CELL: software environment for whole-cell simulation”, Bioinformatics, 15:1 (1999), 72–84 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/15.1.72'>10.1093/bioinformatics/15.1.72</ext-link>

[6] National Resource for Cell Analysis and Modeling, <ext-link ext-link-type='uri' href='http://vcell.org/'>http://vcell.org/</ext-link>

[7] BioUML – open source Java framework for systems biology, <ext-link ext-link-type='uri' href='http://www.biouml.org/'>http://www.biouml.org/</ext-link>

[8] Center for Cell and Virus Theory. Cell Modelling Page, <ext-link ext-link-type='uri' href='http://biodynamics.indiana.edu/CellModeling'>http://biodynamics.indiana.edu/ CellModeling</ext-link>

[9] Ortoleva P., Berry E., Brun Y., Fan J., Fontus M., Hubbard K., Jaqaman K., Jarymowycz L., Navid A., Sayyed-Ahmad A., Shreif Z., Stanley F., Tuncay K., Weitzke E., Wu L. C., “The Karyote physico-chemical genomic, proteomic, metabolic cell modeling system”, OMICS, 7:3 (2003), 269–283 <ext-link ext-link-type='doi' href='https://doi.org/10.1089/153623103322452396'>10.1089/153623103322452396</ext-link>

[10] BioNetGen – Biological Network Generator, <ext-link ext-link-type='uri' href='http://cellsignaling.lanl.gov/bionetgen'>http://cellsignaling.lanl.gov/ bionetgen</ext-link>

[11] J. R. Faeder, M. L. Blinov, B. Goldstein and W. S. Hlavacek, “Rule-based modeling of biochemical networks”, Complexity, 10 ((2005), 22–41 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cplx.20074'>10.1002/cplx.20074</ext-link>

[12] Blinov M. L., Faeder J. R., Goldstein B., Hlavacek W S., “BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains”, Bioinformatics, 20:17 (2004), 3289–3291 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/bth378'>10.1093/bioinformatics/bth378</ext-link>

[13] Sauro H. M., Hucka M., Finney A., Wellock C., Bolouri H., Doyle J. and Kitano H., “Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration”, OMICS, 7:4 (2003), 355–372 <ext-link ext-link-type='doi' href='https://doi.org/10.1089/153623103322637670'>10.1089/153623103322637670</ext-link>

[14] P. K. Dhar, T. Ch. Meng, S. Somani, Li Ye, K. Sakharkar, A. Krishnan, A. B. M. Ridwan, S. Ho Kok Wah, M. Chitre, Zhu Hao, “Grid Cellware: the first grid-enabled tool for modelling and simulating cellular processes”, Bioinformatics, 21:7 (2005), 1284–1287 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/bti143'>10.1093/bioinformatics/bti143</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2163244'>2163244</ext-link>

[15] Cellware: A New Modeling and Simulation Tool for Modeling Cellular Transactions, <ext-link ext-link-type='uri' href='http://www.bii.a-star.edu.sg/research/sbg/cellware/'>http://www.bii.a-star.edu.sg/research/sbg/cellware/</ext-link>

[16] Systems Biology Markup Language, <ext-link ext-link-type='uri' href='http://sbml.org/index.psp'>http://sbml.org/index.psp</ext-link>

[17] Extensible Markup Language (XML) 1.0 (Fourth Edition), <ext-link ext-link-type='uri' href='http://www.w3.org/TR/RECxml/'>http://www.w3.org/TR/RECxml/</ext-link>

[18] World Wide Web Consortium, <ext-link ext-link-type='uri' href='http://www.w3.org/'>http://www.w3.org/</ext-link>

[19] A. Finney and M. Hucka, “Systems Biology Markup Language: Level 2 and Beyond”, Biochem. Soc. Trans., 31 (2003), 1472–1473 <ext-link ext-link-type='doi' href='https://doi.org/10.1042/BST0311472'>10.1042/BST0311472</ext-link>

[20] A. Finney, “Developing SBML Beyond Level 2: Proposals for Development”, Lecture Notes in Computer Science, 3082, 2005, 242–247 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1088.68820'>1088.68820</ext-link>

[21] Hucka M., Finney A., Sauro H. M., Bolouri H., Doyle J. C., Kitano H., Arkin A. P., Bornstein B. J., Bray D., Cornish-Bowden A., Cuellar A. A., Dronov S., Gilles E. D., Ginkel M., Gor V., Goryanin II, Hedley W. J., Hodgman T. C., Hofmeyr J. H., Hunter P. J., Juty N. S., Kasberger J. L., Kremling A., Kummer U., Le Novere N., Loew L. M., Lucio D., Mendes P., Minch E., Mjolsness E. D., Nakayama Y., Nelson M. R., Nielsen P. F., Sakurada T., Schaff J. C., Shapiro B. E., Shimizu T. S., Spence H. D., Stelling J., Takahashi K., Tomita M., Wagner J., Wang J., “SBML Forum. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models”, Bioinformatics, 19:4 (2003), 524–531 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btg015'>10.1093/bioinformatics/btg015</ext-link>

[22] Shapiro B. E., Hucka M., Finney A., Doyle J., “MathSBML: a package for manipulating SBML-based biological models”, Bioinformatics, 20:16 (2004), 2829–2831 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/bth271'>10.1093/bioinformatics/bth271</ext-link>

[23] CellML Home Page, <ext-link ext-link-type='uri' href='http://www.cellml.org/'>http://www.cellml.org/</ext-link>

[24] Cuellar A. A., Lloyd C. M., Nielsen P. F., Bullivant D. P., Nickerson D. P. and Hunter P. J., “An Overview of CellML 1.1, a Biological Model Description Language”, SIMULATION: Transactions of The Society for Modeling and Simulation International, 79:12 (2003), 740–747 <ext-link ext-link-type='doi' href='https://doi.org/10.1177/0037549703040939'>10.1177/0037549703040939</ext-link>

[25] Lloyd C. M., Halstead M. D. B. and Nielsen P. F., “CellML: its future, present and past”, Progress in Biophysics and Molecular Biology, 85:2–3 (2004), 433–450 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.pbiomolbio.2004.01.004'>10.1016/j.pbiomolbio.2004.01.004</ext-link>

[26] Schilstra M. J., Li L., Matthews J., Finney A., Hucka M., Le Novere N., “CellML2SBML: conversion of CellML into SBML”, Bioinformatics, 22:8 (2006), 1018–1020 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btl047'>10.1093/bioinformatics/btl047</ext-link>

[27] The BioModels Database, <ext-link ext-link-type='uri' href='http://www.ebi.ac.uk/biomodels/'>http://www.ebi.ac.uk/biomodels/</ext-link>

[28] Le Novere N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J. L., Hucka M., “BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems”, Nucleic Acids Res., 34 (2006), D689–D691 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkj092'>10.1093/nar/gkj092</ext-link>

[29] BioPAX : Biological Pathways Exchange, <ext-link ext-link-type='uri' href='http://www.biopax.org/'>http://www.biopax.org/</ext-link>

[30] Fisher I. Z., Statisticheskaya teoriya zhidkostei, GIFML, M., 1961, 280 pp.

[31] Poltev V. I., Grokhlina T. I. and Malenkov G. G., J. Biomol. Struct. Dyn., 2 (1984), 413–429

[32] Poltev V. I., Malenkov G. G., Gonzalez E. J., Teplukhin A. V., Rein R., Shibata M. and Miller J. H., J. Biomol. Struct. Dyn., 13 (1996), 717–725