Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions
Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 2, pp. 377-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the Boolean network modelling the cell division cycle of fission yeast Schizosaccharomyces pombe. The analysis of its dynamics shows that this model is robust correspondingly to the initial value disturbances. The detailed consideration of the conditions leading to both biological path and lethal mutations is provided.
@article{MBB_2007_2_2_a4,
     author = {M. I. Davidich and E. B. Postnikov},
     title = {Boolean model of fission yeast {Schizosaccharomyces} pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {377--386},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a4/}
}
TY  - JOUR
AU  - M. I. Davidich
AU  - E. B. Postnikov
TI  - Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2007
SP  - 377
EP  - 386
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a4/
LA  - ru
ID  - MBB_2007_2_2_a4
ER  - 
%0 Journal Article
%A M. I. Davidich
%A E. B. Postnikov
%T Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions
%J Matematičeskaâ biologiâ i bioinformatika
%D 2007
%P 377-386
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a4/
%G ru
%F MBB_2007_2_2_a4
M. I. Davidich; E. B. Postnikov. Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 2, pp. 377-386. http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a4/

[1] Klipp E., Herwig R., Kowald A., Wierling C., Lehrach H., Systems Biology in Practice: Concepts, Implementation and Application, Wiley-VCH, 2005

[2] Hasty J., McMillen D., Isaacs F., Collins J. J., “Computational studies of gene regulatory networks: in numero molecular biology”, Nat. Rev. Genet., 2 (2001), 268–279 | DOI

[3] Riel N. A. W., “Dynamic modelling and analysis of biochemical networks: mechanismbased models and model-based experiments”, Briefings in Bioinformatics, 7:4 (2006), 364–374 | DOI

[4] Smolen P., Baxter D. A., Byrne J. H., “Mathematical modeling of gene networks”, Neuron., 26 (2000), 567–580 | DOI

[5] Aguda B. D., “Modeling the Cell Division Cycle”, Lect. Notes Math., 1872, 2006, 1–22 | MR

[6] Tyson J. J., Chen K. C., Novak B., “Network dynamics and cell physiology”, Nature Rev. Mol. Cell. Biol., 2 (2001), 908–916 | DOI

[7] Braunewell S., Bornholdt S., “Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity”, J. Theor. Biol., 245:4 (2006), 638–643 | DOI | MR

[8] Albert R., Othmer H. G., “The topology of the regulatory interactions predicts the expression pattern of the Drosophila segment polarity genes”, J. Theor. Biol., 223:1 (2003), 1–18 | DOI | MR

[9] Espinosa-Soto C., Padilla-Longoria P., Alvarez-Buylla E. R., “A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles”, Plant Cell., 16 (2004), 2923–2939 | DOI

[10] Sanchez L., Thieffry D., “A logical analysis of the drosophila gap-gene system”, J. Theor. Biol., 211 (2001), 115–141 | DOI

[11] Genoud T., Metraux J. P., “Crosstalk in plant cell signaling: Structure and function of the genetic network”, Trends Plant Sci., 4 (1999), 503–507 | DOI

[12] Mendoza L., Thieffry D., Alvarez-Buylla E. R., “Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analysis”, Bioinformatics, 15 (1999), 593–606 | DOI

[13] Thum K. E., Shasha D. E., Lejay L. V., Coruzzi G. M., “Light- and carbonsignaling pathways. Modeling circuits of interactions”, Plant Physiol., 132 (2003), 440–452 | DOI

[14] Li F., Long T., Lu Y., Quyang Q., Tang C., “The yeast cell-cycle network is robustly designed”, PNAS, 101:14 (2004), 4781–4786 | DOI

[15] Faure A., Naldi A., Chaouiya C., Thieffry D., “Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle”, Bioinformatics, 22:14 (2006), 124–131 | DOI

[16] Gunsalus K. C., Ge H., Schetter A. J., Goldberg D. S., Han J.-D. J. et al., “Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis”, Nature, 436:11 (2005), 861–865 | DOI

[17] Forsburg S. L., “The best yeast?”, Trends in Genetics, 15:9 (1999), 340–344 | DOI

[18] Novak B., Tyson J. J., “Modeling the control of DNA replication in fission yeast”, PNAS, 94 (1997), 9147–9152 | DOI

[19] Novak B., Pataki Z., Ciliberto A., Tyson J. J., “Mathematical model of the cell division cycle of fission yeast”, Chaos, 11:1 (2001), 277–286 | DOI | Zbl

[20] Tyson J. J., Csikasz-Nagy A., Novak B., “The dynamics of the cell-cycle regulation”, BioEssays, 24 (2002), 1095–1109 | DOI

[21] Davidich M. I., Bornholt S., Boolean network model predicts cell cycle sequence of fission yeast, , (Submitted to PLoS ONE) http://www.arxiv.org/abs/0704.2200

[22] Furnari B., Rhind N., Russell P., “Cdc25 Mitotic Inducer Targeted by Chk1 DNA Damage Checkpoint Kinase”, Science, 227:5331 (1997), 1495–1497 | DOI

[23] Kim S. H., Lin D. P., Matsumoto S., Kitazono A., Matsumoto T., “Fission Yeast Slp1: An Effector of the Mad2-Dependent Spindle Checkpoint”, Science, 279:5353 (1998), 1045–1047 | DOI

[24] Moreno S., Nurse P., “Regulation of progression through the $G_1$ phase of the cell cycle by the ruml$^+$ gene”, Nature, 367 (1994), 236–242 | DOI

[25] Chunhui C., Network Dynamics of Budding Yeast Cell Cycle, Diss. B.Sc., Baptist University, Hong Kong, 2005