Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2007_2_2_a4, author = {M. I. Davidich and E. B. Postnikov}, title = {Boolean model of fission yeast {Schizosaccharomyces} pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {377--386}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a4/} }
TY - JOUR AU - M. I. Davidich AU - E. B. Postnikov TI - Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions JO - Matematičeskaâ biologiâ i bioinformatika PY - 2007 SP - 377 EP - 386 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a4/ LA - ru ID - MBB_2007_2_2_a4 ER -
%0 Journal Article %A M. I. Davidich %A E. B. Postnikov %T Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions %J Matematičeskaâ biologiâ i bioinformatika %D 2007 %P 377-386 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a4/ %G ru %F MBB_2007_2_2_a4
M. I. Davidich; E. B. Postnikov. Boolean model of fission yeast Schizosaccharomyces pombe cell division cycle: the dynamics in the case of normal and perturbated initial conditions. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 2, pp. 377-386. http://geodesic.mathdoc.fr/item/MBB_2007_2_2_a4/
[1] Klipp E., Herwig R., Kowald A., Wierling C., Lehrach H., Systems Biology in Practice: Concepts, Implementation and Application, Wiley-VCH, 2005
[2] Hasty J., McMillen D., Isaacs F., Collins J. J., “Computational studies of gene regulatory networks: in numero molecular biology”, Nat. Rev. Genet., 2 (2001), 268–279 | DOI
[3] Riel N. A. W., “Dynamic modelling and analysis of biochemical networks: mechanismbased models and model-based experiments”, Briefings in Bioinformatics, 7:4 (2006), 364–374 | DOI
[4] Smolen P., Baxter D. A., Byrne J. H., “Mathematical modeling of gene networks”, Neuron., 26 (2000), 567–580 | DOI
[5] Aguda B. D., “Modeling the Cell Division Cycle”, Lect. Notes Math., 1872, 2006, 1–22 | MR
[6] Tyson J. J., Chen K. C., Novak B., “Network dynamics and cell physiology”, Nature Rev. Mol. Cell. Biol., 2 (2001), 908–916 | DOI
[7] Braunewell S., Bornholdt S., “Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity”, J. Theor. Biol., 245:4 (2006), 638–643 | DOI | MR
[8] Albert R., Othmer H. G., “The topology of the regulatory interactions predicts the expression pattern of the Drosophila segment polarity genes”, J. Theor. Biol., 223:1 (2003), 1–18 | DOI | MR
[9] Espinosa-Soto C., Padilla-Longoria P., Alvarez-Buylla E. R., “A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles”, Plant Cell., 16 (2004), 2923–2939 | DOI
[10] Sanchez L., Thieffry D., “A logical analysis of the drosophila gap-gene system”, J. Theor. Biol., 211 (2001), 115–141 | DOI
[11] Genoud T., Metraux J. P., “Crosstalk in plant cell signaling: Structure and function of the genetic network”, Trends Plant Sci., 4 (1999), 503–507 | DOI
[12] Mendoza L., Thieffry D., Alvarez-Buylla E. R., “Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analysis”, Bioinformatics, 15 (1999), 593–606 | DOI
[13] Thum K. E., Shasha D. E., Lejay L. V., Coruzzi G. M., “Light- and carbonsignaling pathways. Modeling circuits of interactions”, Plant Physiol., 132 (2003), 440–452 | DOI
[14] Li F., Long T., Lu Y., Quyang Q., Tang C., “The yeast cell-cycle network is robustly designed”, PNAS, 101:14 (2004), 4781–4786 | DOI
[15] Faure A., Naldi A., Chaouiya C., Thieffry D., “Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle”, Bioinformatics, 22:14 (2006), 124–131 | DOI
[16] Gunsalus K. C., Ge H., Schetter A. J., Goldberg D. S., Han J.-D. J. et al., “Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis”, Nature, 436:11 (2005), 861–865 | DOI
[17] Forsburg S. L., “The best yeast?”, Trends in Genetics, 15:9 (1999), 340–344 | DOI
[18] Novak B., Tyson J. J., “Modeling the control of DNA replication in fission yeast”, PNAS, 94 (1997), 9147–9152 | DOI
[19] Novak B., Pataki Z., Ciliberto A., Tyson J. J., “Mathematical model of the cell division cycle of fission yeast”, Chaos, 11:1 (2001), 277–286 | DOI | Zbl
[20] Tyson J. J., Csikasz-Nagy A., Novak B., “The dynamics of the cell-cycle regulation”, BioEssays, 24 (2002), 1095–1109 | DOI
[21] Davidich M. I., Bornholt S., Boolean network model predicts cell cycle sequence of fission yeast, , (Submitted to PLoS ONE) http://www.arxiv.org/abs/0704.2200
[22] Furnari B., Rhind N., Russell P., “Cdc25 Mitotic Inducer Targeted by Chk1 DNA Damage Checkpoint Kinase”, Science, 227:5331 (1997), 1495–1497 | DOI
[23] Kim S. H., Lin D. P., Matsumoto S., Kitazono A., Matsumoto T., “Fission Yeast Slp1: An Effector of the Mad2-Dependent Spindle Checkpoint”, Science, 279:5353 (1998), 1045–1047 | DOI
[24] Moreno S., Nurse P., “Regulation of progression through the $G_1$ phase of the cell cycle by the ruml$^+$ gene”, Nature, 367 (1994), 236–242 | DOI
[25] Chunhui C., Network Dynamics of Budding Yeast Cell Cycle, Diss. B.Sc., Baptist University, Hong Kong, 2005