Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2007_2_1_a8, author = {Yu. E. El'kin and A. V. Moskalenko and Ch. F. Starmer}, title = {Spontaneous halt of spiral wave drift in homogeneous excitable media}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {73--81}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a8/} }
TY - JOUR AU - Yu. E. El'kin AU - A. V. Moskalenko AU - Ch. F. Starmer TI - Spontaneous halt of spiral wave drift in homogeneous excitable media JO - Matematičeskaâ biologiâ i bioinformatika PY - 2007 SP - 73 EP - 81 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a8/ LA - ru ID - MBB_2007_2_1_a8 ER -
%0 Journal Article %A Yu. E. El'kin %A A. V. Moskalenko %A Ch. F. Starmer %T Spontaneous halt of spiral wave drift in homogeneous excitable media %J Matematičeskaâ biologiâ i bioinformatika %D 2007 %P 73-81 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a8/ %G ru %F MBB_2007_2_1_a8
Yu. E. El'kin; A. V. Moskalenko; Ch. F. Starmer. Spontaneous halt of spiral wave drift in homogeneous excitable media. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 1, pp. 73-81. http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a8/
[1] Biktashev V. N., Holden A. V., Nikolaev E. V., “Spiral wave meander and symmetry of the plane”, Int. J. Bifurc. Chaos, 6:12A (1996), 2433–2440 | DOI | MR
[2] Elkin Yu. E., “Avtovolnovye protsessy”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 27–40 http://www.matbio.org/downloads/ Elkin2006(1_27).pdf
[3] Winfree A., “Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media”, Chaos, 1:3 (1991), 303–334 | DOI | MR
[4] Efimov I. R., Krinsky V. I., Jalife J., “Dynamics of rotating vortices in the Beeler–Reuter model of cardiac tissue”, Chaos, Solitons Fractals, 5:3/4 (1995), 513–526 | DOI | Zbl
[5] Moskalenko A. V., Elkin Yu. E., “Monomorfna li monomorfnaya aritmiya?”, Biofizika, 52:2 (2007), 339–343
[6] Aliev R., Panfilov A., “A simple two-variable model of cardiac excitation”, Chaos, Solitons Fractals, 7:3 (1996), 293–301 | DOI
[7] Medvinsky A., Rusakov A., Moskalenko A., Fedorov M., Panfilov A., “The study of autowave mechanisms of electrocardiogram variability during high-frequency arrhythmias: the result of mathematical modeling”, Biophysics, 48:2 (2003), 303–312
[8] Rusakov A., Medvinsky A., “The rotation of autowaves as a result of their penetration through a system of unexcitable obstacles. A mechanism of arrhythmias associated with aging”, Biophysics, 50 (2005), 127–131
[9] Programma dlya modelirovaniya avtovolnovykh protsessov AWM, versiya 1.3 beta, Freeware: http://www.maths.liv.ac.uk/~vadim/Elkin/AW/progs.htm
[10] Ataullakhanov F. I., Lobanova E. S., Morozova O. L., Shnol E. E., Ermakova E. A., Butylin A. A., Zaikin A. N., “Slozhnye rezhimy rasprostraneniya vozbuzhdeniya i samoorganizatsii v modeli svertyvaniya krovi”, UFN, 177:1 (2007), 87–104
[11] Noble D., “Modelling the heart: from genes to cells to whole organ”, Science, 295 (2002), 1678–1682 | DOI