Spontaneous halt of spiral wave drift in homogeneous excitable media
Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 1, pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In computer simulations, we found a new type of spiral wave drift in а homogeneous two-dimensional excitable medium, namely, a circular drift of the spiral wave with decrease of the drift velocity right up to its total cessation. We have investigated certain quantitative characteristics of the new spiral wave behavior. As a result, we have demonstrated that the new spiral wave behavior essentially differs from the types of its behavior that was known before. This discovery can improve comprehension of mechanisms of some potentially life-threatening cardiac arrhythmias.
@article{MBB_2007_2_1_a8,
     author = {Yu. E. El'kin and A. V. Moskalenko and Ch. F. Starmer},
     title = {Spontaneous halt of spiral wave drift in homogeneous excitable media},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {73--81},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a8/}
}
TY  - JOUR
AU  - Yu. E. El'kin
AU  - A. V. Moskalenko
AU  - Ch. F. Starmer
TI  - Spontaneous halt of spiral wave drift in homogeneous excitable media
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2007
SP  - 73
EP  - 81
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a8/
LA  - ru
ID  - MBB_2007_2_1_a8
ER  - 
%0 Journal Article
%A Yu. E. El'kin
%A A. V. Moskalenko
%A Ch. F. Starmer
%T Spontaneous halt of spiral wave drift in homogeneous excitable media
%J Matematičeskaâ biologiâ i bioinformatika
%D 2007
%P 73-81
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a8/
%G ru
%F MBB_2007_2_1_a8
Yu. E. El'kin; A. V. Moskalenko; Ch. F. Starmer. Spontaneous halt of spiral wave drift in homogeneous excitable media. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 1, pp. 73-81. http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a8/

[1] Biktashev V. N., Holden A. V., Nikolaev E. V., “Spiral wave meander and symmetry of the plane”, Int. J. Bifurc. Chaos, 6:12A (1996), 2433–2440 | DOI | MR

[2] Elkin Yu. E., “Avtovolnovye protsessy”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 27–40 http://www.matbio.org/downloads/ Elkin2006(1_27).pdf

[3] Winfree A., “Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media”, Chaos, 1:3 (1991), 303–334 | DOI | MR

[4] Efimov I. R., Krinsky V. I., Jalife J., “Dynamics of rotating vortices in the Beeler–Reuter model of cardiac tissue”, Chaos, Solitons Fractals, 5:3/4 (1995), 513–526 | DOI | Zbl

[5] Moskalenko A. V., Elkin Yu. E., “Monomorfna li monomorfnaya aritmiya?”, Biofizika, 52:2 (2007), 339–343

[6] Aliev R., Panfilov A., “A simple two-variable model of cardiac excitation”, Chaos, Solitons Fractals, 7:3 (1996), 293–301 | DOI

[7] Medvinsky A., Rusakov A., Moskalenko A., Fedorov M., Panfilov A., “The study of autowave mechanisms of electrocardiogram variability during high-frequency arrhythmias: the result of mathematical modeling”, Biophysics, 48:2 (2003), 303–312

[8] Rusakov A., Medvinsky A., “The rotation of autowaves as a result of their penetration through a system of unexcitable obstacles. A mechanism of arrhythmias associated with aging”, Biophysics, 50 (2005), 127–131

[9] Programma dlya modelirovaniya avtovolnovykh protsessov AWM, versiya 1.3 beta, Freeware: http://www.maths.liv.ac.uk/~vadim/Elkin/AW/progs.htm

[10] Ataullakhanov F. I., Lobanova E. S., Morozova O. L., Shnol E. E., Ermakova E. A., Butylin A. A., Zaikin A. N., “Slozhnye rezhimy rasprostraneniya vozbuzhdeniya i samoorganizatsii v modeli svertyvaniya krovi”, UFN, 177:1 (2007), 87–104

[11] Noble D., “Modelling the heart: from genes to cells to whole organ”, Science, 295 (2002), 1678–1682 | DOI