Stoichiometric analysis of biochemical systems on graphs. I.~Graphical rules of finding of conservation relationships
Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 1, pp. 36-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The graph-theoretical approach of finding of conservation relationships (linear integral of motion) of kinetic equations of biochemical systems is considered. The one-to-one correspondence between a connected directed bipartite graph and a stoichiometric matrix, and also a Jacobian of a complex reaction (a metabolic network), is shown. It is shown that the topological fragments and the graph images, which determine the general structure-dynamic properties of a reaction network, can be revealed by analysis of the graph created on the scheme/network of the pathway. Thus, the general structure-dynamic properties of the studied system have the topological interpretation and can be revealed and classified. The graphical rules (1) and (2) for revealing of the components, which are connected by the conservation relationships, in a complex reaction/metabolic network, are developed. The first rule is the necessary and sufficient conditions of equivalence of an isolated subgraph of the graph of reaction to the conservation relationship. The second rule is a graphic procedure of finding of unknown coefficients in the conservation relationships.
@article{MBB_2007_2_1_a4,
     author = {G. L. Ermakov},
     title = {Stoichiometric analysis of biochemical systems on graphs. {I.~Graphical} rules of finding of conservation relationships},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {36--47},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a4/}
}
TY  - JOUR
AU  - G. L. Ermakov
TI  - Stoichiometric analysis of biochemical systems on graphs. I.~Graphical rules of finding of conservation relationships
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2007
SP  - 36
EP  - 47
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a4/
LA  - ru
ID  - MBB_2007_2_1_a4
ER  - 
%0 Journal Article
%A G. L. Ermakov
%T Stoichiometric analysis of biochemical systems on graphs. I.~Graphical rules of finding of conservation relationships
%J Matematičeskaâ biologiâ i bioinformatika
%D 2007
%P 36-47
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a4/
%G ru
%F MBB_2007_2_1_a4
G. L. Ermakov. Stoichiometric analysis of biochemical systems on graphs. I.~Graphical rules of finding of conservation relationships. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 1, pp. 36-47. http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a4/

[1] Kitano H., Science, 295 (2002), 1662–1664 | DOI

[2] Kacser H., Burns J. A., Sypm. Soc. Exp. Biol., 27 (1973), 65–104

[3] Schuster S., Dandekar T., Fell D. A., Trends Biotechnol., 17 (1999), 53–60 | DOI

[4] Reder C. J., Theor. Biol., 135 (1988), 175–201 | DOI | MR

[5] Clarke B. L., Cell Biophys., 12 (1988), 237–253

[6] Cornish-Bowden A., Hofmeyr J.-H. S., J. Theor. Biol., 216 (2002), 179–191 | DOI | MR

[7] Stelling J., Klamt S., Bettenbrock K., Schuster S., Gilles E. D., Nature, 420 (2002), 190–193 | DOI

[8] Edwards J. S., Palsson B. O., PNAS USA, 97 (2000), 5528–5533 | DOI

[9] Ravasz E., Somera A. L., Mongru D. A., Oltvai Z. N. and Barabasi A. L., Science, 297 (2002), 15551–1555 | DOI

[10] Famili I., Palsson B. O., J. Theor. Biol., 224 (2003), 87–96 | DOI | MR

[11] Burgard A. P., Nikolaev E. V., Schilling C. H. and Maranas C. D., Genome Research, 14 (2004), 301–312 | DOI

[12] Papin J. A., Palsson B. O., J. Theor. Biol., 227 (2004), 283–297 | DOI

[13] Schuster S., Fell D. A., Dandekar T., Nature biotechnol., 18 (2000), 326–332 | DOI

[14] Kompala D. S., Ramkrischna D., Jansen N. B., Tsao G. T., Biotechnol. Bioeng., 28 (1986), 1044–1056 | DOI

[15] Savageau M. A., J. Theor. Biol., 25 (1969), 365–369 | DOI

[16] Palsson B. O., Joshi A., Ozturk S. S., Fed. Proc., 46 (1987), 2485–2489

[17] Ermakov G. L., Biokhimiya, 68:10 (2003), 1395–1406

[18] Ermakov G. L., Biokhimiya, 68:10 (2003), 1381–1394

[19] Volpert A. I., Matem. sb., 88(130) (1972), 578–588 | MR

[20] Ivanova A. N., Kinetika i kataliz, 20:4 (1979), 1019–1023 | MR

[21] Ivanova A. N., Kinetika i kataliz, 20:4 (1979), 1024–1028 | MR

[22] Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., Mol. Biol., 35:6 (2001), 1080–1087

[23] Angeli D., Ferrell J. E., Sontag E. D., PNAS USA, 101 (2004), 1822–1827 | DOI

[24] Chou K.-C., Liu W. M., J. Theor. Biol., 91 (1981), 637–654 | DOI | MR

[25] Balandin A. A., Izv. AN SSSR. ser. Khim., 1 (1943), 35

[26] Zeigarnik A. V., Temkin O. N., Kinetika i kataliz, 35:5 (1994), 702–710

[27] Horiuti J., Nakamura T. Z., Phys. Chem. Neue Folge, 11:5–6 (1957), 358–365

[28] Temkin M. I., Dokl. AN SSSR, 152:1 (1963), 156–159

[29] Emmanuel N. M., Knorre D. G., Kurs khimicheskoi kinetiki, Vysshaya shkola, M., 1974, 173–181

[30] Stepanov N. F., Erlykina M. E., Filippov G. G., Metody lineinoi algebry v fizicheskoi khimii, MGU, M., 1976, 156–187 | MR

[31] Yablonskii G. S., Bykov V. I., Gorban A. N., Kineticheskie modeli kataliticheskikh reaktsii, Nauka, Novosibirsk, 1983, 73–101

[32] Korzukhin M. D., Zhurnal fiz. Khimii, 46:7 (1972), 1845–1847

[33] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR

[34] Evstegneev V. A., Kasyanov V. N., Tolkovyi slovar po teorii grafov v informatike i programmirovanii, Nauka, Novosibirsk, 1999, 286 pp.