Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAT_1962_6_2_a4, author = {Tung Chin-chu}, title = {Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$}, journal = {Matematika}, pages = {150--168}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {1962}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/} }
TY - JOUR AU - Tung Chin-chu TI - Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$ JO - Matematika PY - 1962 SP - 150 EP - 168 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/ LA - ru ID - MAT_1962_6_2_a4 ER -
%0 Journal Article %A Tung Chin-chu %T Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$ %J Matematika %D 1962 %P 150-168 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/ %G ru %F MAT_1962_6_2_a4
Tung Chin-chu. Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$. Matematika, Tome 6 (1962) no. 2, pp. 150-168. http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/