Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$
Matematika, Tome 6 (1962) no. 2, pp. 150-168
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MAT_1962_6_2_a4,
author = {Tung Chin-chu},
title = {Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$},
journal = {Matematika},
pages = {150--168},
year = {1962},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/}
}
TY - JOUR
AU - Tung Chin-chu
TI - Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$
JO - Matematika
PY - 1962
SP - 150
EP - 168
VL - 6
IS - 2
UR - http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/
LA - ru
ID - MAT_1962_6_2_a4
ER -
Tung Chin-chu. Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$. Matematika, Tome 6 (1962) no. 2, pp. 150-168. http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/