Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$
Matematika, Tome 6 (1962) no. 2, pp. 150-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MAT_1962_6_2_a4,
     author = {Tung Chin-chu},
     title = {Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$},
     journal = {Matematika},
     pages = {150--168},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/}
}
TY  - JOUR
AU  - Tung Chin-chu
TI  - Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$
JO  - Matematika
PY  - 1962
SP  - 150
EP  - 168
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/
LA  - ru
ID  - MAT_1962_6_2_a4
ER  - 
%0 Journal Article
%A Tung Chin-chu
%T Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$
%J Matematika
%D 1962
%P 150-168
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/
%G ru
%F MAT_1962_6_2_a4
Tung Chin-chu. Positions of limit-cycles of the system $\frac{dx}{dt}=\sum_{0\le{i+k}\le2}a_{ik}x^iy^k$, $\frac{dy}{dt}=\sum_{0\le{i+k}\le2}b_{ik}x^iy^k$. Matematika, Tome 6 (1962) no. 2, pp. 150-168. http://geodesic.mathdoc.fr/item/MAT_1962_6_2_a4/