Almost every bipartite graph has not two vertices of minimum degree
Mathematica slovaca, Tome 43 (1993) no. 2, pp. 113-117.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 05C35, 05C80
@article{MASLO_1993__43_2_a0,
     author = {Bukor, Jozef},
     title = {Almost every bipartite graph has not two vertices of minimum degree},
     journal = {Mathematica slovaca},
     pages = {113--117},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1993},
     mrnumber = {1274596},
     zbl = {0795.05126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MASLO_1993__43_2_a0/}
}
TY  - JOUR
AU  - Bukor, Jozef
TI  - Almost every bipartite graph has not two vertices of minimum degree
JO  - Mathematica slovaca
PY  - 1993
SP  - 113
EP  - 117
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MASLO_1993__43_2_a0/
LA  - en
ID  - MASLO_1993__43_2_a0
ER  - 
%0 Journal Article
%A Bukor, Jozef
%T Almost every bipartite graph has not two vertices of minimum degree
%J Mathematica slovaca
%D 1993
%P 113-117
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MASLO_1993__43_2_a0/
%G en
%F MASLO_1993__43_2_a0
Bukor, Jozef. Almost every bipartite graph has not two vertices of minimum degree. Mathematica slovaca, Tome 43 (1993) no. 2, pp. 113-117. http://geodesic.mathdoc.fr/item/MASLO_1993__43_2_a0/