Latin $(n\times n\times(n-2))$-parallelepipeds not completing to a Latin cube
Mathematica slovaca, Tome 39 (1989) no. 2, pp. 121-125.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 05B15, 05B99
@article{MASLO_1989__39_2_a0,
     author = {Kochol, Martin},
     title = {Latin $(n\times n\times(n-2))$-parallelepipeds not completing to a {Latin} cube},
     journal = {Mathematica slovaca},
     pages = {121--125},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1989},
     mrnumber = {1018253},
     zbl = {0685.05010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MASLO_1989__39_2_a0/}
}
TY  - JOUR
AU  - Kochol, Martin
TI  - Latin $(n\times n\times(n-2))$-parallelepipeds not completing to a Latin cube
JO  - Mathematica slovaca
PY  - 1989
SP  - 121
EP  - 125
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MASLO_1989__39_2_a0/
LA  - en
ID  - MASLO_1989__39_2_a0
ER  - 
%0 Journal Article
%A Kochol, Martin
%T Latin $(n\times n\times(n-2))$-parallelepipeds not completing to a Latin cube
%J Mathematica slovaca
%D 1989
%P 121-125
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MASLO_1989__39_2_a0/
%G en
%F MASLO_1989__39_2_a0
Kochol, Martin. Latin $(n\times n\times(n-2))$-parallelepipeds not completing to a Latin cube. Mathematica slovaca, Tome 39 (1989) no. 2, pp. 121-125. http://geodesic.mathdoc.fr/item/MASLO_1989__39_2_a0/