Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2024_31_4_a0, author = {A. Yu. Poletaev and I. V. Paramonov and E. I. Boychuk}, title = {Methods of sentiment detection towards aspect of economic and social development in {Russian} sentences}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {362--383}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_4_a0/} }
TY - JOUR AU - A. Yu. Poletaev AU - I. V. Paramonov AU - E. I. Boychuk TI - Methods of sentiment detection towards aspect of economic and social development in Russian sentences JO - Modelirovanie i analiz informacionnyh sistem PY - 2024 SP - 362 EP - 383 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2024_31_4_a0/ LA - ru ID - MAIS_2024_31_4_a0 ER -
%0 Journal Article %A A. Yu. Poletaev %A I. V. Paramonov %A E. I. Boychuk %T Methods of sentiment detection towards aspect of economic and social development in Russian sentences %J Modelirovanie i analiz informacionnyh sistem %D 2024 %P 362-383 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2024_31_4_a0/ %G ru %F MAIS_2024_31_4_a0
A. Yu. Poletaev; I. V. Paramonov; E. I. Boychuk. Methods of sentiment detection towards aspect of economic and social development in Russian sentences. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 4, pp. 362-383. http://geodesic.mathdoc.fr/item/MAIS_2024_31_4_a0/
[1] B. Liu, Sentiment Analysis and Opinion Mining, Springer, 2022, 167 pp.
[2] W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, “A survey on aspect-based sentiment analysis: Tasks, methods, and challenges”, IEEE Transactions on Knowledge and Data Engineering, 35:11 (2022), 11019–11038 | DOI
[3] O. Alqaryouti et al, “Aspect-based sentiment analysis using smart government review data”, Applied Computing and Informatics, 20:1/2 (2024), 142–161 | DOI
[4] A. Nazir, Y. Rao, L. Wu, L. Sun, “Issues and challenges of aspect-based sentiment analysis: Acomprehensive survey”, IEEE Transactions on Affective Computing, 13:2 (2020), 845–863 | DOI | MR
[5] A. Poletaev, I. Paramonov, E. Kolupaev, “Methods of implicit aspect detection in Russian publicism sentences”, Modeling and Analysis of Information Systems, 31:3 (2024), 226–239 (in Russian) | DOI
[6] A. D. Kazun, “Construction of social problems in the media and agenda-setting theory: The limits of concepts' compatibility”, Monitoring of Public Opinion: Economic and Social Changes, 2016, no. 3(133), 159–172 (in Russian) | DOI
[7] A. Guseva, I. Kuznetsov, P. Bochkarev, D. Smirnov, “Digital shadow of Russian international megaprojectsb of NPP construction abroad: Assessment of the tone of utterances”, Modern High Technologies, 12:1 (2022), 26–34 (in Russian) | DOI
[8] W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, “A survey on aspect-based sentiment analysis: Tasks, methods, and challenges”, IEEE Transactions on Knowledge and Data Engineering, 35:11 (2023), 11019–11038 | DOI
[9] E. G. Brunova, Y. V. Bidulya, A. A. Gorbunov, “Aspect-based sentiment analysis of political discourse”, Tyumen State University Herald. Humanities Research. Humanitates, 7:3(27) (2021), 6–22 (in Russian) | DOI
[10] Muljono, B. Harjo, R. Abdullah, “Aspect-based sentiment analysis for financial review with implicit aspect and opinion using semantic similarity and hybrid approach”, International Journal of Intelligent Engineering Systems, 17:5 (2024), 646–658 | DOI
[11] K. Ananthajothi, K. Karthikayani, R. Prabha, “Explicit and implicit oriented aspect-based sentiment analysis with optimal feature selection and deep learning for demonetization in India”, Data Knowledge Engineering, 142 (2022), 102092 | DOI
[12] C. Hutto, E. Gilbert, “VADER: A parsimonious rule-based model for sentiment analysis of social media text”, Proceedings of the International AAAI Conference on Web and Social Media, v. 8, 2014, 216–225 | DOI | MR
[13] N. Chechneva, “Simple and efficient approach to the aspect extraction from customers' product reviews”, Proceedings of the 26th Conference of Open Innovations Association FRUCT, 2020, 67–73 | DOI
[14] A. Poletaev, I. Paramonov, E. Boychuk, “Automatic detection of sentiment towards explicit aspect in Russian publicism sentences using syntactic structure”, Proceedings of the 36th Conference of Open Innovations Association FRUCT, IEEE, 2024, 593–602
[15] M. A. Pil'gun, “Rechevye osobennosti politicheskoj kommunikacii”, Proceedings of Kazan University. Humanities Sciences Series, 152, no. 2, 2010, 236–246 (in Russian)
[16] Y. Songetal, “Targeted sentiment classificati on with attentional encoder network”, Artificial Neural Networks and Machine Learning-ICANN 2019: Text and Time Series, Springer International Publishing, 2019, 93–103 | DOI
[17] J. Ansel et al, “PyTorch 2: Faster machine learning through dynamic Python bytecode transformation and graph compilation”, ASPLOC'24: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, v. 2, ACM, 2024, 929–947 | DOI
[18] A. Naumov et al, “Neural-network method for determining text author's sentiment to an aspect specified by the named entity”, CEUR Workshop Proceedings, 2648, 2020, 134–143 | MR
[19] Y. Wang, L. Wu, J. Li, X. Liang, M. Zhang, “Are the BERT family zero-shot learners? A study on their potential and limitations”, Artificial Intelligence, 322 (2023), 103953 | DOI | MR | Zbl
[20] A. Golubev, N. Rusnachenko, N. Loukachevitch, “RuSentNE-2023: Evaluating entity-oriented sentiment analysis on Russian news texts”, Computational Linguistics and Intellectual Technologies, 22, Papers from the Annual conference “Dialogue” (2023) (2023), 130–141 | DOI
[21] D. Ma et al, “Interactive attention networks for aspect-level sentiment classification”, Proceedings of the 26th International Joint Conference on Artificial Intelligence, AAAI Press, 2017, 4068–4074 | DOI
[22] A. Y. Poletaev, I. V. Paramonov, E. I. Boychuk, “Semantic rule-based sentiment detection algorithm for Russian publicism sentences”, Modeling and Analysis of Information Systems, 30:4 (2023), 394–417 (in Russian) | DOI
[23] A. Y. Poletaev, I. V. Paramonov, E. I. Boychuk, “Algorithm of constituency tree from dependency tree construction for a Russian-language sentence”, Informatics and Automation, 22:6 (2023), 1323–1353 (in Russian) | DOI
[24] D. Chandrasekaran, V. Mago, “Evolution of semantic similarity a survey”, ACM Computing Surveys (CSUR), 54:2 (2021), 1–37 | DOI
[25] A. Kutuzov, E. Kuzmenko, “WebVectors: A toolkit for building web interfaces for vector semantic models”, Analysis of Images, Social Networks and Texts, 5th International Conference, AIST 2016, Revised Selected Papers (Yekaterinburg, Russia, April 7-9, 2016), Communications in Computer and Information Science, 161, Springer International Publishing, Cham, 2017, 155 | DOI
[26] M. Korobov, “Morphological analyzer and generator for Russian and Ukrainian languages”, Analysis of Images, Social Networks and Texts, Communications in Computer and Information Science, 542, Springer International Publishing, 2015, 320–332 (English) | DOI
[27] P. Qi et al, “Stanza: A Python natural language processing toolkit for many human languages”, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Association for Computational Linguistics, 2020, 101–108 | DOI