Discovering hierarchical process models: an approach based on events partitioning
Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 3, pp. 294-315

Voir la notice de l'article provenant de la source Math-Net.Ru

Process mining is a field of computer science that deals with the discovery and analysis of process models based on automatically generated event logs. Currently, many companies are using this technology to optimize and improve their business processes. However, a discovered process model may be too detailed, sophisticated, and difficult for experts to understand. In this paper, we consider a problem of discovering the hierarchical business process model from a low-level event log, i. e., the problem of the automatic synthesis of more readable and understandable process models based on the data stored in the event logs of information systems. The discovery of better-structured and more readable process models is extensively studied in the framework of process mining research from different perspectives. In this paper, we present an algorithm for discovering hierarchical process models represented as two-level workflow Petri nets. The algorithm is based on predefined event partitioning so that this partitioning defines a sub-process corresponding to a high-level transition at the top level of a two-level net. In contrast to existing solutions, our algorithm does not impose restrictions on the process control flow and allows for concurrency and iterations.
Keywords: process mining, Petri nets, workflow nets, process discovery, hierarchical process model, event log.
@article{MAIS_2024_31_3_a3,
     author = {A. K. Begicheva and I. A. Lomazova and R. A. Nesterov},
     title = {Discovering hierarchical process models: an approach based on events partitioning},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {294--315},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/}
}
TY  - JOUR
AU  - A. K. Begicheva
AU  - I. A. Lomazova
AU  - R. A. Nesterov
TI  - Discovering hierarchical process models: an approach based on events partitioning
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2024
SP  - 294
EP  - 315
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/
LA  - ru
ID  - MAIS_2024_31_3_a3
ER  - 
%0 Journal Article
%A A. K. Begicheva
%A I. A. Lomazova
%A R. A. Nesterov
%T Discovering hierarchical process models: an approach based on events partitioning
%J Modelirovanie i analiz informacionnyh sistem
%D 2024
%P 294-315
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/
%G ru
%F MAIS_2024_31_3_a3
A. K. Begicheva; I. A. Lomazova; R. A. Nesterov. Discovering hierarchical process models: an approach based on events partitioning. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 3, pp. 294-315. http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/