Discovering hierarchical process models: an approach based on events partitioning
Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 3, pp. 294-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Process mining is a field of computer science that deals with the discovery and analysis of process models based on automatically generated event logs. Currently, many companies are using this technology to optimize and improve their business processes. However, a discovered process model may be too detailed, sophisticated, and difficult for experts to understand. In this paper, we consider a problem of discovering the hierarchical business process model from a low-level event log, i. e., the problem of the automatic synthesis of more readable and understandable process models based on the data stored in the event logs of information systems. The discovery of better-structured and more readable process models is extensively studied in the framework of process mining research from different perspectives. In this paper, we present an algorithm for discovering hierarchical process models represented as two-level workflow Petri nets. The algorithm is based on predefined event partitioning so that this partitioning defines a sub-process corresponding to a high-level transition at the top level of a two-level net. In contrast to existing solutions, our algorithm does not impose restrictions on the process control flow and allows for concurrency and iterations.
Keywords: process mining, Petri nets, workflow nets, process discovery, hierarchical process model, event log.
@article{MAIS_2024_31_3_a3,
     author = {A. K. Begicheva and I. A. Lomazova and R. A. Nesterov},
     title = {Discovering hierarchical process models: an approach based on events partitioning},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {294--315},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/}
}
TY  - JOUR
AU  - A. K. Begicheva
AU  - I. A. Lomazova
AU  - R. A. Nesterov
TI  - Discovering hierarchical process models: an approach based on events partitioning
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2024
SP  - 294
EP  - 315
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/
LA  - ru
ID  - MAIS_2024_31_3_a3
ER  - 
%0 Journal Article
%A A. K. Begicheva
%A I. A. Lomazova
%A R. A. Nesterov
%T Discovering hierarchical process models: an approach based on events partitioning
%J Modelirovanie i analiz informacionnyh sistem
%D 2024
%P 294-315
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/
%G ru
%F MAIS_2024_31_3_a3
A. K. Begicheva; I. A. Lomazova; R. A. Nesterov. Discovering hierarchical process models: an approach based on events partitioning. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 3, pp. 294-315. http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/

[1] A. Augusto et al, “Automated discovery of process models from event logs: Review and benchmark”, IEEE Transactions on Knowledge and Data Engineering, 31:4 (2018), 686–705 | DOI | MR

[2] W. van der Aalst, “Workflow verification: Finding control-flow errors using Petri-net-based techniques”, Business process management: models, techniques, and empirical studies, Springer, 2002, 161–183 | MR

[3] A. K. Begicheva, I. A. Lomazova, “Discovering high-level process models from event logs”, Modeling and Analysis of Information Systems, 24:2 (2017), 125–140 | DOI | MR

[4] S. J. van Zelst, F. Mannhardt, M. de Leoni, A. Koschmider, “Event abstraction in process mining: Literature review and taxonomy”, Granular Computing, 6:3 (2021), 719–736 | DOI

[5] D. G. Maneschijn, R. H. Bemthuis, F. A. Bukhsh, M. E. Iacob, “A methodology for aligning process model abstraction levels and stakeholder needs”, Proceedings of the 24th International Conference on Enterprise Information Systems, v. 1, 2022, 137–147 | DOI

[6] F. Mannhardt, M. de Leoni, H. Reijers, W. van der Aalst, P. Toussaint, “From low-level events to activities a pattern-based approach”, Business Process Management, Springer, 2016, 125–141

[7] N. Tax, N. Sidorova, R. Haakma, W. van der Aalst, “Event abstraction for process mining using supervised learning techniques”, Proceedings of SAI Intelligent Systems Conference, Springer, 2018, 161–170

[8] C. Y. Li, S. J. van Zelst, W. van der Aalst, “A framework for automated abstraction class detection for event abstraction”, Intelligent Systems Design and Applications, Springer, 2023, 126–136

[9] G. van Houdt, M. de Leoni, N. Martin, B. Depaire, “An empirical evaluation of unsupervised event log abstraction techniques in process mining”, Information Systems, 121 (2024), 102–320 | MR

[10] A. Rebmann, P. Pfeiffer, P. Fettke, H. v. d. Aa, “Multi-perspective identification of event groups for event abstraction”, Process Mining Workshops, Springer, 2023, 31–43 | DOI

[11] S. J. Leemans, K. Goel, S. J. van Zelst, “Using multi-level information in hierarchical process mining: Balancing behavioural quality and model complexity”, Proceedings of the 2nd International Conference on Process Mining, IEEE, 2020, 137–144

[12] A. Senderovich, A. Shleyfman, M. Weidlich, A. Gal, A. Mandelbaum, “To aggregate or to eliminate? Optimal model simplification for improved process performance prediction”, Information Systems, 78 (2018), 96–111 | DOI

[13] S. Smirnov, H. Reijers, M. Weske, T. Nugteren, “Business process model abstraction: A definition, catalog, and survey”, Distributed and Parallel Databases, 30 (2012), 63–99 | DOI

[14] C. W. Gunther, W. M. Van Der Aalst, “Fuzzy miningadaptive process simplification based on multi-perspective metrics”, International Conference on business process management, Springer, 2007, 328–343 | DOI

[15] W. Reisig, Understanding Petri nets: Modeling techniques, analysis methods, case studies, Springer, 2013 | MR | Zbl

[16] K. Jensen, L. Kristensen, Coloured Petri nets: modelling and validation of concurrent systems, Springer, 2009 | MR

[17] S. Leemans, D. Fahland, W. van der Aalst, “Discovering block-structured process models from event logs a constructive approach”, Application and Theory of Petri Nets and Concurrency, Springer, 2013, 311–329 | DOI | MR | Zbl

[18] G. Greco, A. Guzzo, L. Pontieri, “Mining taxonomies of process models”, Data Knowledge Engineering, 67:1 (2008), 74–102 | DOI

[19] J. Li, R. Bose, W. van der Aalst, “Mining context-dependent and interactive business process maps using execution patterns,”, Business Process Management Workshops, BPM 2010, Springer, 2010, 109–121

[20] X. Lu, A. Gal, H. A. Reijers, “Discovering hierarchical processes using flexible activity trees for event abstraction”, Proceedings of the 2nd International Conference on Process Mining, IEEE, 2020, 145–152

[21] W. van der Aalst, C. Gunther, “Finding structure in unstructured processes: The case for process mining”, Seventh International Conference on Application of Concurrency to System Design (ACSD 2007), IEEE, 2007, 3–12 | DOI

[22] J. De Smedt, J. De Weerdt, J. Vanthienen, “Multi-paradigm process mining: Retrieving better models by combining rules and sequences”, On the Move to Meaningful Internet Systems, OTM 2014 Conferences, Springer, 2014, 446–453 | DOI

[23] J. de San Pedro, J. Cortadella, “Mining structured Petri nets for the visualization of process behavior”, Proceedings of the 31st Annual ACM Symposium on Applied Computing, ACM, 2016, 839–846 | DOI

[24] W. van der Aalst, A. Kalenkova, V. Rubin, E. Verbeek, “Process discovery using localized events”, Application and Theory of Petri Nets and Concurrency, Springer, 2015, 287–308 | DOI | MR | Zbl

[25] A. Kalenkova, I. Lomazova, “Discovery of cancellation regions within process mining techniques”, Fundamenta Informaticae, 133:2–3 (2014), 197–209 | DOI | MR | Zbl

[26] A. Kalenkova, I. Lomazova, W. van der Aalst, “Process model discovery: A method based on transition system decomposition”, Application and Theory of Petri Nets and Concurrency, Springer, 2014, 71–90 | DOI | MR | Zbl

[27] C. Y. Li, S. J. van Zelst, W. M. van der Aalst, “An activity instance based hierarchical framework for event abstraction”, Proceedings of the 3rd International Conference on Process Mining, 2021, 160–167 | DOI

[28] T. Tapia-Flores, E. Lopez-Mellado, A. P. Estrada-Vargas, J. J. Lesage, “Discovering Petri net models of discrete-event processes by computing t-invariants”, IEEE Transactions on Automation Science and Engineering, 15:3 (2017), 992-1003 | DOI

[29] T. Tapia-Flores, E. Lopez-Mellado, “Discovering workflow nets of concurrent iterative processes”, Acta Informatica, 61, Sep (2023) | DOI | MR

[30] W. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes, Springer, Heidelberg, 2011 | Zbl

[31] K. Lautenbach, “Linear algebraic techniques for place/transition nets”, Petri Nets: Central Models and Their Properties, ACPN 1986, Springer, Heidelberg, 1987, 142–167 | DOI | MR

[32] A. Berti, S. Van Zelst, W. van der Aalst, “Process mining for Python (PM4Py): Bridging the gap between process- and data science”, Proceedings of the ICPM Demo Track 2019, CEUR-WS.org, 2019, 13–16

[33] A. Begicheva, Hierarchical process model discovery — hldiscovery, 2022 https://github.com/gingerabsurdity/hldiscovery

[34] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance Checking: Relating Processes and Models, Springer, 2018

[35] A. Adriansyah, B. F. van Dongen, W. M. van der Aalst, “Conformance checking using cost-based fitness analysis”, 2011 IEEE 15th international enterprise distributed object computing conference, IEEE, 2011, 55–64 | DOI

[36] J. Munoz-Gama, J. Carmona, “A fresh look at precision in process conformance”, International Conference on Business Process Management, Springer, 2010, 211–226

[37] I. Shugurov, A. Mitsyuk, “Generation of a set of event logs with noise”, Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software Engineering, 2014, 88–95

[38] A. Augusto et al, Data underlying the paper: Automated discovery of process models from event logs: Review and benchmark (version 1), Data set, 4TU.Centre for Research Data, 2019 | DOI