Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2024_31_3_a3, author = {A. K. Begicheva and I. A. Lomazova and R. A. Nesterov}, title = {Discovering hierarchical process models: an approach based on events partitioning}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {294--315}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/} }
TY - JOUR AU - A. K. Begicheva AU - I. A. Lomazova AU - R. A. Nesterov TI - Discovering hierarchical process models: an approach based on events partitioning JO - Modelirovanie i analiz informacionnyh sistem PY - 2024 SP - 294 EP - 315 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/ LA - ru ID - MAIS_2024_31_3_a3 ER -
%0 Journal Article %A A. K. Begicheva %A I. A. Lomazova %A R. A. Nesterov %T Discovering hierarchical process models: an approach based on events partitioning %J Modelirovanie i analiz informacionnyh sistem %D 2024 %P 294-315 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/ %G ru %F MAIS_2024_31_3_a3
A. K. Begicheva; I. A. Lomazova; R. A. Nesterov. Discovering hierarchical process models: an approach based on events partitioning. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 3, pp. 294-315. http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a3/
[1] A. Augusto et al, “Automated discovery of process models from event logs: Review and benchmark”, IEEE Transactions on Knowledge and Data Engineering, 31:4 (2018), 686–705 | DOI | MR
[2] W. van der Aalst, “Workflow verification: Finding control-flow errors using Petri-net-based techniques”, Business process management: models, techniques, and empirical studies, Springer, 2002, 161–183 | MR
[3] A. K. Begicheva, I. A. Lomazova, “Discovering high-level process models from event logs”, Modeling and Analysis of Information Systems, 24:2 (2017), 125–140 | DOI | MR
[4] S. J. van Zelst, F. Mannhardt, M. de Leoni, A. Koschmider, “Event abstraction in process mining: Literature review and taxonomy”, Granular Computing, 6:3 (2021), 719–736 | DOI
[5] D. G. Maneschijn, R. H. Bemthuis, F. A. Bukhsh, M. E. Iacob, “A methodology for aligning process model abstraction levels and stakeholder needs”, Proceedings of the 24th International Conference on Enterprise Information Systems, v. 1, 2022, 137–147 | DOI
[6] F. Mannhardt, M. de Leoni, H. Reijers, W. van der Aalst, P. Toussaint, “From low-level events to activities a pattern-based approach”, Business Process Management, Springer, 2016, 125–141
[7] N. Tax, N. Sidorova, R. Haakma, W. van der Aalst, “Event abstraction for process mining using supervised learning techniques”, Proceedings of SAI Intelligent Systems Conference, Springer, 2018, 161–170
[8] C. Y. Li, S. J. van Zelst, W. van der Aalst, “A framework for automated abstraction class detection for event abstraction”, Intelligent Systems Design and Applications, Springer, 2023, 126–136
[9] G. van Houdt, M. de Leoni, N. Martin, B. Depaire, “An empirical evaluation of unsupervised event log abstraction techniques in process mining”, Information Systems, 121 (2024), 102–320 | MR
[10] A. Rebmann, P. Pfeiffer, P. Fettke, H. v. d. Aa, “Multi-perspective identification of event groups for event abstraction”, Process Mining Workshops, Springer, 2023, 31–43 | DOI
[11] S. J. Leemans, K. Goel, S. J. van Zelst, “Using multi-level information in hierarchical process mining: Balancing behavioural quality and model complexity”, Proceedings of the 2nd International Conference on Process Mining, IEEE, 2020, 137–144
[12] A. Senderovich, A. Shleyfman, M. Weidlich, A. Gal, A. Mandelbaum, “To aggregate or to eliminate? Optimal model simplification for improved process performance prediction”, Information Systems, 78 (2018), 96–111 | DOI
[13] S. Smirnov, H. Reijers, M. Weske, T. Nugteren, “Business process model abstraction: A definition, catalog, and survey”, Distributed and Parallel Databases, 30 (2012), 63–99 | DOI
[14] C. W. Gunther, W. M. Van Der Aalst, “Fuzzy miningadaptive process simplification based on multi-perspective metrics”, International Conference on business process management, Springer, 2007, 328–343 | DOI
[15] W. Reisig, Understanding Petri nets: Modeling techniques, analysis methods, case studies, Springer, 2013 | MR | Zbl
[16] K. Jensen, L. Kristensen, Coloured Petri nets: modelling and validation of concurrent systems, Springer, 2009 | MR
[17] S. Leemans, D. Fahland, W. van der Aalst, “Discovering block-structured process models from event logs a constructive approach”, Application and Theory of Petri Nets and Concurrency, Springer, 2013, 311–329 | DOI | MR | Zbl
[18] G. Greco, A. Guzzo, L. Pontieri, “Mining taxonomies of process models”, Data Knowledge Engineering, 67:1 (2008), 74–102 | DOI
[19] J. Li, R. Bose, W. van der Aalst, “Mining context-dependent and interactive business process maps using execution patterns,”, Business Process Management Workshops, BPM 2010, Springer, 2010, 109–121
[20] X. Lu, A. Gal, H. A. Reijers, “Discovering hierarchical processes using flexible activity trees for event abstraction”, Proceedings of the 2nd International Conference on Process Mining, IEEE, 2020, 145–152
[21] W. van der Aalst, C. Gunther, “Finding structure in unstructured processes: The case for process mining”, Seventh International Conference on Application of Concurrency to System Design (ACSD 2007), IEEE, 2007, 3–12 | DOI
[22] J. De Smedt, J. De Weerdt, J. Vanthienen, “Multi-paradigm process mining: Retrieving better models by combining rules and sequences”, On the Move to Meaningful Internet Systems, OTM 2014 Conferences, Springer, 2014, 446–453 | DOI
[23] J. de San Pedro, J. Cortadella, “Mining structured Petri nets for the visualization of process behavior”, Proceedings of the 31st Annual ACM Symposium on Applied Computing, ACM, 2016, 839–846 | DOI
[24] W. van der Aalst, A. Kalenkova, V. Rubin, E. Verbeek, “Process discovery using localized events”, Application and Theory of Petri Nets and Concurrency, Springer, 2015, 287–308 | DOI | MR | Zbl
[25] A. Kalenkova, I. Lomazova, “Discovery of cancellation regions within process mining techniques”, Fundamenta Informaticae, 133:2–3 (2014), 197–209 | DOI | MR | Zbl
[26] A. Kalenkova, I. Lomazova, W. van der Aalst, “Process model discovery: A method based on transition system decomposition”, Application and Theory of Petri Nets and Concurrency, Springer, 2014, 71–90 | DOI | MR | Zbl
[27] C. Y. Li, S. J. van Zelst, W. M. van der Aalst, “An activity instance based hierarchical framework for event abstraction”, Proceedings of the 3rd International Conference on Process Mining, 2021, 160–167 | DOI
[28] T. Tapia-Flores, E. Lopez-Mellado, A. P. Estrada-Vargas, J. J. Lesage, “Discovering Petri net models of discrete-event processes by computing t-invariants”, IEEE Transactions on Automation Science and Engineering, 15:3 (2017), 992-1003 | DOI
[29] T. Tapia-Flores, E. Lopez-Mellado, “Discovering workflow nets of concurrent iterative processes”, Acta Informatica, 61, Sep (2023) | DOI | MR
[30] W. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes, Springer, Heidelberg, 2011 | Zbl
[31] K. Lautenbach, “Linear algebraic techniques for place/transition nets”, Petri Nets: Central Models and Their Properties, ACPN 1986, Springer, Heidelberg, 1987, 142–167 | DOI | MR
[32] A. Berti, S. Van Zelst, W. van der Aalst, “Process mining for Python (PM4Py): Bridging the gap between process- and data science”, Proceedings of the ICPM Demo Track 2019, CEUR-WS.org, 2019, 13–16
[33] A. Begicheva, Hierarchical process model discovery — hldiscovery, 2022 https://github.com/gingerabsurdity/hldiscovery
[34] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance Checking: Relating Processes and Models, Springer, 2018
[35] A. Adriansyah, B. F. van Dongen, W. M. van der Aalst, “Conformance checking using cost-based fitness analysis”, 2011 IEEE 15th international enterprise distributed object computing conference, IEEE, 2011, 55–64 | DOI
[36] J. Munoz-Gama, J. Carmona, “A fresh look at precision in process conformance”, International Conference on Business Process Management, Springer, 2010, 211–226
[37] I. Shugurov, A. Mitsyuk, “Generation of a set of event logs with noise”, Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software Engineering, 2014, 88–95
[38] A. Augusto et al, Data underlying the paper: Automated discovery of process models from event logs: Review and benchmark (version 1), Data set, 4TU.Centre for Research Data, 2019 | DOI