Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2024_31_3_a2, author = {I. A. Surov}, title = {Matrix-qubit algorithm for semantic analysis of probabilistic data}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {280--293}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a2/} }
I. A. Surov. Matrix-qubit algorithm for semantic analysis of probabilistic data. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 3, pp. 280-293. http://geodesic.mathdoc.fr/item/MAIS_2024_31_3_a2/
[1] S. D. Larson, P. Gleeson, A. E. X. Brown, “Connectome to behaviour: Modelling caenorhabditis elegans at cellular resolution”, Philosophical Transactions of the Royal Society B: Biological Sciences, 373:1758 (2018), 170–366 | DOI
[2] O. P. Kuznetsov, “Nonclassical paradigms in the artificial intelligence”, Teoriya i Sistemy Upravleniya, 5 (1995), 3–23 (in Russian)
[3] A. Pavlov, “Fourier holography techniques for artificial intelligence”, Advances in Information Optics and Photonics, 2010, 251–269 | DOI
[4] D. Widdows, K. Kitto, T. Cohen, “Quantum mathematics in artificial intelligence”, Journal of Artificial Intelligence Research, 72 (2021), 1307–1341 | DOI | MR | Zbl
[5] A. Melnikov, M. Kordzanganeh, A. Alodjants, R. K. Lee, “YQuantum machine learning: From physics to software engineering”, Advances in Physics: X, 8:1 (2023) | DOI
[6] A. Y. Khrennikov, Ubiquitous Quantum Structure: From Psychology to Finance, Springer, Berlin–Heidelberg, 2010 | DOI | Zbl
[7] I. A. Surov, “Logic of sets and logic of waves in cognitive-behavioral modeling”, Information and Mathematical Technologies in Science and Management, 32:4 (2023), 51–66 | DOI | MR
[8] A. K. Guts, Fundamentals of Quantum Cybernetics, KAN, 2008 (in Russian) | MR
[9] A. Hirose (Ed.), Complex-Valued Neural Networks. Theories and Applications, World Scientific, 2003 | MR | Zbl
[10] J. J. Denimal, S. Camiz, “Complex principal component analysis: Theory and geometrical aspects”, Journal of Classification, 39:2 (2022), 376–408 | DOI | MR
[11] S. Kozhisseri, I. A. Surov, “Quantum-probabilistic SVD: Complex-valued factorization of matrix data”, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 22:3 (2022), 567–573 | DOI
[12] B. Wang, Q. Li, M. Melucci, D. Song, “Semantic Hilbert space for text representation learning”, Proceedings of the World Wide Web Conference, ACM Press, 2019, 3293–3299 | DOI
[13] D. D. Lee, H. S. Seung, “Learning the parts of objects by non-negative matrix factorization”, Nature, 401:6755 (1999), 788–791 | DOI | Zbl
[14] I. A. Surov, “Natural code of subjective experience”, Biosemiotics, 15:1 (2022), 109–139 | DOI
[15] I. A. Surov, “What is the difference? Pragmatic formalization of meaning”, Artificial intelligence and decision making, 2023, no. 1, 78–89 (in Russian) | DOI
[16] A. Tversky, E. Shafir, “The disjunction effect in choice under uncertainty”, Psychological Science, 3:5 (1992), 305–309 | DOI
[17] I. A. Surov, “Quantum cognitive triad: Semantic geometry of context representation”, Foundations of Science, 26:4 (2021), 947–975 | DOI | MR | Zbl
[18] I. A. Surov, “Probabilistic prediction of Yirrational decisions from semantic composition of contexts”, Journal of Applied Informatics, 19:1 (2024), 125–143 | DOI
[19] N. Gillis, Nonnegative Matrix Factorization, Society for Industrial and Applied Mathematics, 2020 | DOI | MR
[20] I. A. Surov, “Life cycle: Semantic matrix of process modeling”, Ontology of designing, 12:4 (2022), 430–453 (in Russian) | DOI
[21] C. Zhu, R. H. Byrd, P. Lu, J. Nocedal, “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization”, ACM Transactions on Mathematical Software, 23:4 (1997), 550–560 | DOI | MR | Zbl