Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2024_31_2_a5, author = {N. S. Lagutina and K. V. Lagutina and V. N. Kopnin}, title = {Automatic determination of semantic similarity of student answers with the standard one using modern models}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {194--205}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a5/} }
TY - JOUR AU - N. S. Lagutina AU - K. V. Lagutina AU - V. N. Kopnin TI - Automatic determination of semantic similarity of student answers with the standard one using modern models JO - Modelirovanie i analiz informacionnyh sistem PY - 2024 SP - 194 EP - 205 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a5/ LA - ru ID - MAIS_2024_31_2_a5 ER -
%0 Journal Article %A N. S. Lagutina %A K. V. Lagutina %A V. N. Kopnin %T Automatic determination of semantic similarity of student answers with the standard one using modern models %J Modelirovanie i analiz informacionnyh sistem %D 2024 %P 194-205 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a5/ %G ru %F MAIS_2024_31_2_a5
N. S. Lagutina; K. V. Lagutina; V. N. Kopnin. Automatic determination of semantic similarity of student answers with the standard one using modern models. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 2, pp. 194-205. http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a5/
[1] R. Gao, H. E. Merzdorf, S. Anwar, M. C. Hipwell, A. Srinivasa, “Automatic assessment of text-based responses in post-secondary education: A systematic review”, Computers and Education: Artificial Intelligence, 6 (2024), 100–206 | DOI
[2] J. Wang, Y. Dong, “Measurement of text similarity: A survey”, Information, 11:9 (2020), 421 | DOI
[3] A. Rozeva, S. Zerkova, “Assessing semantic similarity of texts-methods and algorithms”, AIP Conference Proceedings, 1910:1 (2017), 060–012 | DOI
[4] P. D. Wibisono, A. Asad, A. Chintan, “Short text similarity measurement methods: A review”, Soft Computing, 25 (2021), 4699–4723 | DOI
[5] N. S. Lagutina, M. V. Tihomirov, N. K. Mastakova, “Algoritm avtomaticheskogo postroeniya yazykovogo profilya uchashchegosya”, Zametki po informatike i matematike, 2023, no. 15, 58–65 (in Russian)
[6] O. B. Mishunin, A. P. Savinov, D. I. Firstov, “Sostoyanie i uroven' razrabotok sistem avtomaticheskoj ocenki svobodnyh otvetov na estestvennom yazyke”, Modern high technologies, 2016, no. 1, 38–44 (in Russian)
[7] L. Zahrotun, “Comparison Jaccard similarity, cosine similarity and combined both of the data clustering with Shared Nearest Neighbor method”, Computer Engineering and Applications Journal, 5:1 (2016), 11–18 | DOI
[8] H. A. Abdeljaber, “Automatic Arabic short answers scoring using longest common subsequence and Arabic WordNet”, IEEE Access, 9 (2021), 76-433–76-445 | DOI
[9] S. Sultana, I. Biskri, “Identifying similar sentences by using n-grams of characters”, Recent Trends and Future Technology in Applied Intelligence, Proceedings of 31st International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, Springer, 2018, 833–843 | DOI
[10] S. Vij, D. Tayal, A. Jain, “A machine learning approach for automated evaluation of short answers using text similarity based on WordNet graphs”, Wireless Personal Communications, 111 (2020), 1271–1282 | DOI
[11] Y. Zhou, C. Li, G. Huang, Q. Guo, H. Li, X. Wei, “A short-text similarity model combining semantic and syntactic information”, Electronics, 12:14 (2023), 3126 | DOI
[12] M. Mohler, R. Mihalcea, “Text-to-text semantic similarity for automatic short answer grading”, Proceedings of the 12th Conference of the European Chapter of the ACL, EACL 2009, 2009, 567–575
[13] M. Han, X. Zhang, X. Yuan, J. Jiang, W. Yun, C. Gao, “A survey on the techniques, applications, and performance of short text semantic similarity”, Concurrency and Computation: Practice and Experience, 33:5 (2021), e5971 | DOI
[14] S. Roy, S. Dandapat, A. Nagesh, Y. Narahari, “Wisdom of students: A consistent automatic short answer grading technique”, Proceedings of the 13th International Conference on Natural Language Processing, 2016, 178–187
[15] A. Ahmed, A. Joorabchi, M. J. Hayes, “On deep learning approaches to automated assessment: Strategies for short answer grading”, Proceedings of the 14th International Conference on Computer Supported Education, v. 2, 2022, 85–94 | DOI
[16] A. Ahmed, A. Joorabchi, M. J. Hayes, “On the application of sentence transformers to automatic short answer grading in blended assessment”, Proceedings of the 33rd Irish Signals and Systems Conference (ISSC), IEEE, 2022, 1–6 | DOI
[17] L. Camus, A. Filighera, “Investigating transformers for automatic short answer grading”, Proceedings of the 21st International Conference Artificial Intelligence in Education, v. II, Springer, 2020, 43–48 | DOI
[18] D. Viji, S. Revathy, “A hybrid approach of weighted fine-tuned BERT extraction with deep Siamese Bi-LSTM model for semantic text similarity identification”, Multimedia Tools and Applications, 81:5 (2022), 6131–6157 | DOI
[19] D. Witschard, I. Jusufi, R. M. Martins, K. Kucher, A. Kerren, “Interactive optimization of embedding-based text similarity calculations”, Information Visualization, 21:4 (2022), 335–353 | DOI
[20] T. Brown et al, “Language models are few-shot learners”, Advances in neural information processing systems, 33 (2020), 1877–1901
[21] D. Shashavali et al, “Sentence similarity techniques for short vs variable length text using word embeddings”, Computacion y Sistemas, 23:3 (2019), 999–1004 | DOI
[22] B. Hassan, S. E. Abdelrahman, R. Bahgat, I. Farag, “UESTS: An unsupervised ensemble semantic textual similarity method”, IEEE Access, 7 (2019), 85-462–85-462 | DOI
[23] I. Gagliardi, M. T. Artese, “Ensemble-based short text similarity: An easy approach for multilingual datasets using transformers and wordnet in real-world scenarios”, Big Data and Cognitive Computing, 7:4 (2023), 158 | DOI
[24] N. Lagutina, K. Lagutina, A. Brederman, N. Kasatkina, “Text classification by CEFR levels using machine learning methods and BERT language model”, Modeling and Analysis of Information Systems, 30:3 (2023), 202–213 | DOI | MR
[25] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, C. D. Manning, “Stanza: A Python natural language processing toolkit for many human languages”, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2020, 101–108 | DOI | MR