Mathematical properties of the agent-based model of extinction --- recolonization for population genetics
Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 2, pp. 142-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The individual-based model describes the dynamics of genetic diversity of a population scattered on a spatial continuum in the case of a finite number of individuals. During extinction events in a certain area, a portion of the population dies, after which new individuals with the genotype of the parent are born during recolonization event. In this paper we examine the model, as well as its modification, and derive properties related to population parameters. The study demonstrates that the lifespan of individuals follows an exponential distribution, allele probabilities remain constant over time, and the average heterozygosity, constrained by the number of individuals during extinction and recolonization, equals a similar quantity in the Moran model. The joint distribution of alleles is generalized for populations continuously scattered in space. Joint allele distribution and heterozygosity are computed through simulations.
Keywords: population model, spatial continuum, Moran model.
Mots-clés : recolonisation
@article{MAIS_2024_31_2_a1,
     author = {N. V. Gaianov},
     title = {Mathematical properties of the agent-based model of extinction --- recolonization for population genetics},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {142--151},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a1/}
}
TY  - JOUR
AU  - N. V. Gaianov
TI  - Mathematical properties of the agent-based model of extinction --- recolonization for population genetics
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2024
SP  - 142
EP  - 151
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a1/
LA  - ru
ID  - MAIS_2024_31_2_a1
ER  - 
%0 Journal Article
%A N. V. Gaianov
%T Mathematical properties of the agent-based model of extinction --- recolonization for population genetics
%J Modelirovanie i analiz informacionnyh sistem
%D 2024
%P 142-151
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a1/
%G ru
%F MAIS_2024_31_2_a1
N. V. Gaianov. Mathematical properties of the agent-based model of extinction --- recolonization for population genetics. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 2, pp. 142-151. http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a1/

[1] Durrett, Richard and Durrett, Richard, Probability models for DNA sequence evolution, Springer, 2008 | DOI | MR | Zbl

[2] Felsenstein, Joseph, “A pain in the torus: some difficulties with models of isolation by distance”, The American Naturalist, 109:967 (1975), 359–368 | DOI

[3] Etheridge, Alison M, “Survival and extinction in a locally regulated population”, The Annals of Applied Probability, 14:1 (2004), 188–214 | DOI | MR | Zbl

[4] Etheridge, Alison, Some Mathematical Models from Population Genetics: École D'Été de Probabilités de Saint-Flour XXXIX-2009, Springer Science Business Media, 2011 | DOI | MR

[5] Nick Barton and Alison Etheridge and Amandine Véber, “A New Model for Evolution in a Spatial Continuum”, Electronic Journal of Probability, 15 (2010), 162–216 | DOI | MR | Zbl

[6] Niloy Biswas and Alison Etheridge and Aleksander Klimek, “The spatial Lambda-Fleming-Viot process with fluctuating selection”, Electronic Journal of Probability, 26 (2021), 1–51 | DOI | MR

[7] Alison M. Etheridge and Amandine Véber and Feng Yu, “Rescaling limits of the spatial Lambda-Fleming-Viot process with selection”, Electronic Journal of Probability, 25 (2020), 1–89 | DOI | MR

[8] Guindon, Stéphane and Guo, Hongbin and Welch, David, “Demographic inference under the coalescent in a spatial continuum”, Theoretical population biology, 111 (2016), 43–50, Elsevier | DOI

[9] Joseph, TA and Hickerson, MJ and Alvarado-Serrano, DF, “Demographic inference under a spatially continuous coalescent model”, Heredity, 117:2 (2016), 94–99 | DOI

[10] Streit, Roy L. and Streit, Roy L., The Poisson point process, Springer, 2010 | DOI | MR

[11] Wakely, J., Coalescent Theory: An Introduction, Macmillan Learning, 2016