Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2024_31_2_a1, author = {N. V. Gaianov}, title = {Mathematical properties of the agent-based model of extinction --- recolonization for population genetics}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {142--151}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a1/} }
TY - JOUR AU - N. V. Gaianov TI - Mathematical properties of the agent-based model of extinction --- recolonization for population genetics JO - Modelirovanie i analiz informacionnyh sistem PY - 2024 SP - 142 EP - 151 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a1/ LA - ru ID - MAIS_2024_31_2_a1 ER -
%0 Journal Article %A N. V. Gaianov %T Mathematical properties of the agent-based model of extinction --- recolonization for population genetics %J Modelirovanie i analiz informacionnyh sistem %D 2024 %P 142-151 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a1/ %G ru %F MAIS_2024_31_2_a1
N. V. Gaianov. Mathematical properties of the agent-based model of extinction --- recolonization for population genetics. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 2, pp. 142-151. http://geodesic.mathdoc.fr/item/MAIS_2024_31_2_a1/
[1] Durrett, Richard and Durrett, Richard, Probability models for DNA sequence evolution, Springer, 2008 | DOI | MR | Zbl
[2] Felsenstein, Joseph, “A pain in the torus: some difficulties with models of isolation by distance”, The American Naturalist, 109:967 (1975), 359–368 | DOI
[3] Etheridge, Alison M, “Survival and extinction in a locally regulated population”, The Annals of Applied Probability, 14:1 (2004), 188–214 | DOI | MR | Zbl
[4] Etheridge, Alison, Some Mathematical Models from Population Genetics: École D'Été de Probabilités de Saint-Flour XXXIX-2009, Springer Science Business Media, 2011 | DOI | MR
[5] Nick Barton and Alison Etheridge and Amandine Véber, “A New Model for Evolution in a Spatial Continuum”, Electronic Journal of Probability, 15 (2010), 162–216 | DOI | MR | Zbl
[6] Niloy Biswas and Alison Etheridge and Aleksander Klimek, “The spatial Lambda-Fleming-Viot process with fluctuating selection”, Electronic Journal of Probability, 26 (2021), 1–51 | DOI | MR
[7] Alison M. Etheridge and Amandine Véber and Feng Yu, “Rescaling limits of the spatial Lambda-Fleming-Viot process with selection”, Electronic Journal of Probability, 25 (2020), 1–89 | DOI | MR
[8] Guindon, Stéphane and Guo, Hongbin and Welch, David, “Demographic inference under the coalescent in a spatial continuum”, Theoretical population biology, 111 (2016), 43–50, Elsevier | DOI
[9] Joseph, TA and Hickerson, MJ and Alvarado-Serrano, DF, “Demographic inference under a spatially continuous coalescent model”, Heredity, 117:2 (2016), 94–99 | DOI
[10] Streit, Roy L. and Streit, Roy L., The Poisson point process, Springer, 2010 | DOI | MR
[11] Wakely, J., Coalescent Theory: An Introduction, Macmillan Learning, 2016