Mots-clés : BERT.
@article{MAIS_2024_31_1_a4,
author = {M. A. Kosterin and I. V. Paramonov},
title = {Application of deep neural networks for automatic irony detection in {Russian} texts},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {90--101},
year = {2024},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2024_31_1_a4/}
}
TY - JOUR AU - M. A. Kosterin AU - I. V. Paramonov TI - Application of deep neural networks for automatic irony detection in Russian texts JO - Modelirovanie i analiz informacionnyh sistem PY - 2024 SP - 90 EP - 101 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/MAIS_2024_31_1_a4/ LA - ru ID - MAIS_2024_31_1_a4 ER -
M. A. Kosterin; I. V. Paramonov. Application of deep neural networks for automatic irony detection in Russian texts. Modelirovanie i analiz informacionnyh sistem, Tome 31 (2024) no. 1, pp. 90-101. http://geodesic.mathdoc.fr/item/MAIS_2024_31_1_a4/
[1] M. Kosterin, I. Paramonov, and N. Lagutina, “Automatic Irony and Sarcasm Detection in Russian Sentences: Baseline Methods”, 33rd Conference of Open Innovations Association FRUCT, 2023, 148–154 | DOI
[2] D. Šandor and M. B. Babac, “Sarcasm detection in online comments using machine learning”, Information Discovery and Delivery, 2023 | DOI
[3] R. A. Potamias, G. Siolas, and A.-G. Stafylopatis, “A transformer-based approach to irony and sarcasm detection”, Neural Computing and Applications, 32 (2020), 17309–17320 | DOI
[4] C. Van Hee, E. Lefever, and V. Hoste, “Semeval-2018 task 3: Irony detection in English tweets”, Proceedings of The 12th International Workshop on Semantic Evaluation, 2018, 39–50 | DOI
[5] M. Khodak, N. Saunshi, and K. Vodrahalli, A large self-annotated corpus for sarcasm, 2017, arXiv: 1704.05579 [cs.CL]
[6] E. Riloff, A. Qadir, P. Surve, L. De Silva, N. Gilbert, and R. Huang, “Sarcasm as contrast between a positive sentiment and negative situation”, Proceedings of the 2013 conference on empirical methods in natural language processing, 2013, 704–714
[7] S. Zhang, X. Zhang, J. Chan, and P. Rosso, “Irony detection via sentiment-based transfer learning”, Information Processing Management, 56:5 (2019), 1633–1644 | DOI | MR
[8] D. Hazarika, S. Poria, S. Gorantla, E. Cambria, R. Zimmermann, and R. Mihalcea, Cascade: Contextual sarcasm detection in online discussion forums, 2018, arXiv: 1805.06413 [cs.CL]
[9] T. Zefirova and N. Loukachevitch, “Irony and sarcasm expression in Twitter”, EPiC Series in Language and Linguistics, 4 (2019), 45–49 | DOI
[10] A. A. Gurin and T. A. Zhukov, “Avtomaticheskoe opredelenie sarkazma v tekstakh na russkom yazyke”, Tsyfrovaya ekonomika, 1(22) (2023), 44–53
[11] A. D. Yacoub, S. Slim, and A. Aboutabl, “A Survey of Sentiment Analysis and Sarcasm Detection: Challenges, Techniques, and Trends”, International journal of electrical and computer engineering systems, 15:1 (2024), 69–78 | DOI
[12] Y. Kuratov and M. Arkhipov, Adaptation of deep bidirectional multilingual transformers for Russian language, 2019, arXiv: 1905.07213 [cs.CL]
[13] D. Zmitrovich et al., A family of pretrained transformer language models for Russian, 2023, arXiv: 2309.10931 [cs.CL]
[14] C. Zhou, C. Sun, Z. Liu, and F. Lau, A C-LSTM neural network for text classification, 2015, arXiv: 1511.08630 [cs.CL]
[15] A. Rogers, A. Romanov, A. Rumshisky, S. Volkova, M. Gronas, and A. Gribov, “RuSentiment: An enriched sentiment analysis dataset for social media in Russian”, Proceedings of the 27th international conference on computational linguistics, 2018, 755–763