Semantic rule-based sentiment detection algorithm for Russian publicism sentences
Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 4, pp. 394-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the task of sentiment detecton of Russian sentences, which is understood as the author's attitude on the sentence topic expressed through linguistic expression features. Today most studies on this subject utilize texts of colloquial style, limiting the applicability of their results to other styles of speech, particularly to the publicism. To fill the gap, the authors developed a novel publisism sentences oriented sentiment detection algorithm. The algorithm recursively applies appropriate rules to sentence parts represented as constituency trees. Most of the rules were proposed by a philology expert, based on knowledge on the expression features from Russian philology, and algorithmized using constituency trees generated by the algorithm. A decision tree and a sentiment vocabulary are also used in the work. The article contains the results of evaluation of the algorithm on the publicism sentences corpus OpenSentimentCorpus, F-measure is 0.80. The results of errors analysis are also presented.
Keywords: sentiment analysis, semantic rules, publicism, constituency tree.
Mots-clés : sentiment detection
@article{MAIS_2023_30_4_a6,
     author = {A. Yu. Poletaev and I. V. Paramonov and E. I. Boychuk},
     title = {Semantic rule-based sentiment detection algorithm for {Russian} publicism sentences},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {394--417},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_4_a6/}
}
TY  - JOUR
AU  - A. Yu. Poletaev
AU  - I. V. Paramonov
AU  - E. I. Boychuk
TI  - Semantic rule-based sentiment detection algorithm for Russian publicism sentences
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2023
SP  - 394
EP  - 417
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2023_30_4_a6/
LA  - ru
ID  - MAIS_2023_30_4_a6
ER  - 
%0 Journal Article
%A A. Yu. Poletaev
%A I. V. Paramonov
%A E. I. Boychuk
%T Semantic rule-based sentiment detection algorithm for Russian publicism sentences
%J Modelirovanie i analiz informacionnyh sistem
%D 2023
%P 394-417
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2023_30_4_a6/
%G ru
%F MAIS_2023_30_4_a6
A. Yu. Poletaev; I. V. Paramonov; E. I. Boychuk. Semantic rule-based sentiment detection algorithm for Russian publicism sentences. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 4, pp. 394-417. http://geodesic.mathdoc.fr/item/MAIS_2023_30_4_a6/

[1] B. Liu, Sentiment Analysis and Opinion Mining, Springer, 2022, 167 pp.

[2] A. Dvoybikova, A. Karpov, O. Verkholyak, “Analytical review of methods for identifying emotions in text data”, 3rd International Conference on R. Piotrowski's Readings in Language Engineering and Applied Linguistics, PRLEAL 2019, St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, 2020, 8–21

[3] S. Smetanin, M. Komarov, “Deep transfer learning baselines for sentiment analysis in Russian”, Information Processing Management, 58:3 (2021), 102–484

[4] K. Nursakitov, A. Bekishev, S. Kumargazhanova, A. Urkumbaeva, “Review of methods for determining the tonation of texts in natural languages”, Bulletin of Shakarim University. Technical Sciences, 2023, no. 1 (9), 59–67

[5] M. S. Başarslan, F. Kayaalp, “Sentiment analysis on social media reviews datasets with deep learning approach”, Sakarya University Journal of Computer and Information Sciences, 4:1 (2021), 35–49 | DOI | MR

[6] M. Wankhade, A. C. S. Rao, C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges”, Artificial Intelligence Review, 55:7 (2022), 5731–5780 | DOI

[7] E. N. Tulupova, E. V. Golovina, “Lexico-stylistic percularities of tourist's Internet commentary”, Philology. Theory Practice, 12:5 (2019), 257–261 (in Russian) | DOI

[8] E. I. Boychuk, “Lexical and grammatical features of Internet reviews in the Russian and English languages”, Verhnevolzhski Philological Bulletin, 3:2021, 107–115 (in Russian)

[9] A. Y. Poletaev, I. V. Paramonov, “Recursive sentiment detection algorithm for Russian sentences”, Automatic Control and Computer Sciences, 57:7 (2023), 740–749

[10] M. Eremina, “Rechevoj zhanr otzyva v kommunikativnom prostranstve interneta”, Nauchnyj dialog, 5:2016, 34–45 (in Russian)

[11] A. R. Kalashnikova, “Informativnaya tekstovaya tonal'nost' kak opredelyayushchij faktor ritmicheskoj tekstovoj organizacii”, Izvestiya Volgogradskogo Gosudarstvennogo Pedagogicheskogo Universiteta, 3 (107) (2016), 113–116 (in Russian)

[12] I. V. Paramonov, A. Y. Poletaev, “Annotation of text corpora by sentiment and presence of irony within a project of citizen science”, Modelirovanie i Analiz Informatsionnykh Sistem, 30:1 (2023), 86–100 (in Russian)

[13] N. Loukachevitch, A. Levchik, “Creating a general Russian sentiment lexicon”, Proceedings of the Tenth International Conference on Language Resources and Evaluation, LREC'16, 2016, 1171–1176

[14] D. Kulagin, “Publicly available sentiment dictionary for the Russian language KartaSlovSent”, Computational Linguistics and Intellectual Technologies, Proceesings of the Annual “Dialog” Conference (2021), 2021, 1106–1119 (in Russian) | DOI

[15] A. Y. Poletaev, I. V. Paramonov, E. I. Boychuk, “Algorithm of constituency tree from depencency tree construction for a Russian-language sentence”, Informatics and Automation, 22:6 (2023), 1323–1353 (in Russian) | DOI

[16] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees, Routledge, 2017, 368 pp.

[17] O. Koltsova, S. Alexeeva, S. Pashakhin, S. Koltsov, “PolSentiLex: Sentiment detection in socio-political discussions on Russian social media”, Conference on Artificial Intelligence and Natural Language, 2020, 1–16

[18] W. Souma, I. Vodenska, H. Aoyama, “Enhanced news sentiment analysis using deep learning methods”, Journal of Computational Social Science, 2:1 (2019), 33–46 | DOI

[19] A. B. Junior, N. F. F. da Silva, T. C. Rosa, C. G. Junior, “Sentiment analysis with genetic programming”, Information Sciences, 562 (2021), 116–135 | DOI | MR