Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2023_30_4_a2, author = {O. P. Yakimova and D. M. Murin and V. G. Gorshkov}, title = {Joint simplification of various types spatial objects while preserving topological relationships}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {340--353}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_4_a2/} }
TY - JOUR AU - O. P. Yakimova AU - D. M. Murin AU - V. G. Gorshkov TI - Joint simplification of various types spatial objects while preserving topological relationships JO - Modelirovanie i analiz informacionnyh sistem PY - 2023 SP - 340 EP - 353 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2023_30_4_a2/ LA - ru ID - MAIS_2023_30_4_a2 ER -
%0 Journal Article %A O. P. Yakimova %A D. M. Murin %A V. G. Gorshkov %T Joint simplification of various types spatial objects while preserving topological relationships %J Modelirovanie i analiz informacionnyh sistem %D 2023 %P 340-353 %V 30 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2023_30_4_a2/ %G ru %F MAIS_2023_30_4_a2
O. P. Yakimova; D. M. Murin; V. G. Gorshkov. Joint simplification of various types spatial objects while preserving topological relationships. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 4, pp. 340-353. http://geodesic.mathdoc.fr/item/MAIS_2023_30_4_a2/
[1] W. Tobler, Numerical map generalization, Department of Geography, University of Michigan, Ann Arbour, MI, USA, 1966, 78 pp.
[2] F. Topfer, W. Pillewizer, “The principles of selection”, Cartographic Journal, 3:1 (1966), 10–16 | DOI
[3] J. D. Perkal, “Proba obiektywnej generalizacji”, Geodezia I Kartografia, 7:2 (1958), 130–142 (in Polish)
[4] U. Ramer, “An iterative procedure for the polygonal approximation of plane curves”, Computer Graphics and Image Processing, 1:3 (1972), 244–256 | DOI
[5] D. H. Douglas, T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature”, Cartographica: the international journal for geographic information and geovisualization, 10:2 (1973), 112–122 | DOI
[6] J. S. Marino, “Identification of characteristic points along naturally occurring lines. An empirical study”, The Canadian cartographer Toronto, 16:1 (1979) | Zbl
[7] G. Dutton, “Scale, sinuosity, and point selection in digital line generalization”, Cartography and Geographic Information Science, 26:1 (1999), 33–54 | DOI | MR
[8] A. Chehreghan, R. Ali Abbaspour, “Estimation of empirical parameters in matching of linear vector datasets: An optimization approach”, Model. Earth Syst. Environ, 3 (2017), 1029-1043 | DOI
[9] A. Chehreghan, R. Ali Abbaspour, “A geometric-based approach for road matching on multi-scale datasets using a genetic algorithm”, Cartography and Geographic Information Science, 45:3 (2018), 255–269 | DOI
[10] R. A. Finkel, J. L. Bentley, “Quad trees a data structure for retrieval on composite keys”, Acta informatica, 4 (1974), 1–9 | DOI | Zbl
[11] A. Guttman, “R-trees: A dynamic index structure for spatial searching”, Proceedings of the 1984 ACM SIGMOD international conference on Management of data, 1984, 47–57
[12] U. A. Kravchenko, Information geomodeling: The problem of data and knowledge representation, Abstract of the dissertation for the degree of Doctor of Technical Sciences, 2013 (In Russian)
[13] G. Dettori, E. Puppo, “How generalization interacts with the topological and metric structure of maps”, Proceedings of the 7th International Symposium on Spatial Data Handling, 1996, 559–570
[14] D. Rhind, “Generalization and realism with automated cartographic system”, Canadian Cartographer, 10:1 (1973), 51–62 | DOI
[15] M. Monmonier, “Displacement in vector-and raster-mode graphics”, Cartographica: The International Journal for Geographic Information and Geovisualization, 24:4 (1987), 25–36 | DOI
[16] P. M. Van Der Poorten, C. B. Jones, “Characterisation and generalisation of cartographic lines using delaunay triangulation”, International Journal of Geographical Information Science, 16:8 (2002), 773–794 | DOI
[17] Z. Li, S. Openshaw, “Algorithms for automated line generalization1 based on a natural principle of objective generalization”, International journal of geographical information systems, 6:5 (1992), 373–389 | DOI
[18] P. Raposo, “Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation”, Cartography and Geographic Information Science, 40:5 (2013), 427–443 | DOI
[19] L. Zhilin, Algorithmic Foundation of Multi-Scale Spatial Representation, Taylor Francis Group, LLC, 2007, 282 pp.
[20] Z. Zhao, A. Saalfeld, “Linear-time sleeve-fitting polyline simplification algorithms”, Proceedings of AutoCarto, 13 (1997), 214–223
[21] M. Egenhofer, J. Herring, Categorizing binary topological relations between regions, lines and points in geographic databases, the 9-intersection: Formalism and its use for naturallanguage spatial predicates, Santa Barbara CA National Center for Geographic Information and Analysis Technical Report No 94, 1990, 28 pp.
[22] V. G. Gorshkov, D. M. Murin, O. P. Yakimova, “Research of models of topological relations of spatial objects”, Modelirovanie i Analiz Informatsionnykh Sistem, 29:3 (2022), 154–165 (in Russian)
[23] M.-P. Dubuisson, A. K. Jain, “A modified Hausdorff distance for object matching”, Proceedings of 12th international conference on pattern recognition, v. 1, 1994, 566–568 | DOI