On a geometric approach to the estimation of interpolation projectors
Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 3, pp. 246-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $\Omega$ is a closed bounded subset of ${\mathbb R}^n,$ $S$ is an $n$-dimensional non-degenerate simplex, $\xi(\Omega;S):=$ min {$\sigma\geqslant 1: \Omega\subset \sigma S$}. Here $\sigma S$ is the result of homothety of $S$ with respect to the center of gravity with coefficient $\sigma$. Let $d\geqslant n+1,$ $\varphi_1(x),\ldots,\varphi_d(x)$ be linearly independent monomials in $n$ variables, and $\varphi_1(x)\equiv 1,$ $\varphi_2(x)=x_1,\ \ldots, \varphi_{n+1}(x)=x_n.$ Put $\Pi:=$lin$(\varphi_1,\ldots,\varphi_d).$ The interpolation projector $P: C(\Omega)\to \Pi$ with a set of nodes $x^{(1)},\ldots, x^{(d)} \in \Omega$ is defined by equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right).$ Denote by $\|P\|_{\Omega}$ the norm of $P$ as an operator from $C(\Omega)$ to $C(\Omega)$ . Consider the mapping $T:{\mathbb R}^n\to {\mathbb R}^{d-1}$ of the form $T(x):=(\varphi_2(x),\ldots,\varphi_d(x)). $ We have $ \frac{1}{2}\left(1+\frac{1}{d-1}\right)\left(\|P\|_{\Omega}-1\right)+1 \leqslant \xi(T(\Omega);S)\leqslant \frac{d}{2}\left(\|P\|_{\Omega}-1\right)+1, $ where $S$ is a $(d-1)$-dimensional simplex with vertices $T\left(x^{(j)}\right).$ We discuss this and other relations for polynomial interpolation of functions continuous on a segment. Some results of numerical analysis are presented.
Mots-clés : polynomial interpolation, norm, absorption coefficient, esimation.
Keywords: projector
@article{MAIS_2023_30_3_a4,
     author = {M. V. Nevskii and A. Yu. Ukhalov},
     title = {On a geometric approach to the estimation of interpolation projectors},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {246--257},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a4/}
}
TY  - JOUR
AU  - M. V. Nevskii
AU  - A. Yu. Ukhalov
TI  - On a geometric approach to the estimation of interpolation projectors
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2023
SP  - 246
EP  - 257
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a4/
LA  - ru
ID  - MAIS_2023_30_3_a4
ER  - 
%0 Journal Article
%A M. V. Nevskii
%A A. Yu. Ukhalov
%T On a geometric approach to the estimation of interpolation projectors
%J Modelirovanie i analiz informacionnyh sistem
%D 2023
%P 246-257
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a4/
%G ru
%F MAIS_2023_30_3_a4
M. V. Nevskii; A. Yu. Ukhalov. On a geometric approach to the estimation of interpolation projectors. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 3, pp. 246-257. http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a4/

[1] M. V. Nevskii, Geometricheskie ocenki v polinomial'noj interpolyacii, P. G. Demidov Yaroslavl State University, 2012, 218 pp. (in Russian)

[2] M. V. Nevskii, “Inequalities for the norms of interpolation projectors”, Modeling and Analysis of Information Systems, 15:3 (2008), 28–37

[3] M. V. Nevskii, “On a certain relation for the minimal norm of an interpolation projector”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43

[4] M. V. Nevskii, A. Y. Ukhalov, “Linear interpolation on a euclidean ball in $\mathbb R^n$”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296 | DOI | MR | Zbl

[5] M. V. Nevskii, A. Y. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube”, Modeling and Analysis of Information Systems, 25:3 (2018), 291–311 | DOI | MR

[6] A. Ukhalov, “Supplementary materials for the article “On a geometric approach to the estimation of interpolation projectors””, Mendeley Data, V1, 25:3 (2023), 291–311 | DOI | MR

[7] P. Wellin, Essentials of programming in mathematica, Cambridge University Press, 2016, 436 pp. | Zbl

[8] S. Mangano, Mathematica cookbook: building blocks for science, engineering, finance, music, and more, O'Reilly Media Inc., 2010

[9] S. Wolfram, An elementary introduction to the Wolfram language, Wolfram Media, Inc., 2017

[10] D. E. King, “Dlib-ml: a machine learning toolkit”, Journal of Machine Learning Research, 10 (2009), 1755-1758

[11] N. S. Bogomolova, “Kvadratichnaya interpolyaciya i zadacha o pogloshchenii treugol'nikom parabolicheskogo sektora”, Put' v nauku. matematika, Tezisy dokladov vserossijskoy molodezhnoi konferencii, 2022, 39–41 (in Russian)

[12] S. Pashkovskij, Vychislitel'nye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, 1983, 384 pp. (in Russian) | MR