Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2023_30_3_a4, author = {M. V. Nevskii and A. Yu. Ukhalov}, title = {On a geometric approach to the estimation of interpolation projectors}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {246--257}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a4/} }
TY - JOUR AU - M. V. Nevskii AU - A. Yu. Ukhalov TI - On a geometric approach to the estimation of interpolation projectors JO - Modelirovanie i analiz informacionnyh sistem PY - 2023 SP - 246 EP - 257 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a4/ LA - ru ID - MAIS_2023_30_3_a4 ER -
M. V. Nevskii; A. Yu. Ukhalov. On a geometric approach to the estimation of interpolation projectors. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 3, pp. 246-257. http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a4/
[1] M. V. Nevskii, Geometricheskie ocenki v polinomial'noj interpolyacii, P. G. Demidov Yaroslavl State University, 2012, 218 pp. (in Russian)
[2] M. V. Nevskii, “Inequalities for the norms of interpolation projectors”, Modeling and Analysis of Information Systems, 15:3 (2008), 28–37
[3] M. V. Nevskii, “On a certain relation for the minimal norm of an interpolation projector”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43
[4] M. V. Nevskii, A. Y. Ukhalov, “Linear interpolation on a euclidean ball in $\mathbb R^n$”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296 | DOI | MR | Zbl
[5] M. V. Nevskii, A. Y. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube”, Modeling and Analysis of Information Systems, 25:3 (2018), 291–311 | DOI | MR
[6] A. Ukhalov, “Supplementary materials for the article “On a geometric approach to the estimation of interpolation projectors””, Mendeley Data, V1, 25:3 (2023), 291–311 | DOI | MR
[7] P. Wellin, Essentials of programming in mathematica, Cambridge University Press, 2016, 436 pp. | Zbl
[8] S. Mangano, Mathematica cookbook: building blocks for science, engineering, finance, music, and more, O'Reilly Media Inc., 2010
[9] S. Wolfram, An elementary introduction to the Wolfram language, Wolfram Media, Inc., 2017
[10] D. E. King, “Dlib-ml: a machine learning toolkit”, Journal of Machine Learning Research, 10 (2009), 1755-1758
[11] N. S. Bogomolova, “Kvadratichnaya interpolyaciya i zadacha o pogloshchenii treugol'nikom parabolicheskogo sektora”, Put' v nauku. matematika, Tezisy dokladov vserossijskoy molodezhnoi konferencii, 2022, 39–41 (in Russian)
[12] S. Pashkovskij, Vychislitel'nye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, 1983, 384 pp. (in Russian) | MR