Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2023_30_3_a2, author = {D. A. Kondrat'ev}, title = {Logic for reasoning about bugs in loops over data sequences {(IFIL)}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {214--233}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a2/} }
TY - JOUR AU - D. A. Kondrat'ev TI - Logic for reasoning about bugs in loops over data sequences (IFIL) JO - Modelirovanie i analiz informacionnyh sistem PY - 2023 SP - 214 EP - 233 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a2/ LA - en ID - MAIS_2023_30_3_a2 ER -
D. A. Kondrat'ev. Logic for reasoning about bugs in loops over data sequences (IFIL). Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 3, pp. 214-233. http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a2/
[1] R. Hähnle, M. Huisman, “Deductive software verification: from pen-and-paper proofs to industrial tools”, Computing and software science, Lecture Notes in Computer Science, 10000, Springer, 2019, 345–373 | DOI | Zbl
[2] K. R. Apt, E.-R. Olderog, “Fifty years of Hoare’s logic”, Formal Aspects of Computing, 31:6 (2019), 751–807 | DOI | MR | Zbl
[3] K. R. Apt, E.-R. Olderog, “Assessing the success and impact of Hoare’s logic”, Theories of programming: the life and works of tony hoare, 2021, 41–76 | DOI | Zbl
[4] C. A. R. Hoare, “An axiomatic basis for computer programming”, Communications of the ACM, 12:10 (1969), 576–580 | DOI | MR | Zbl
[5] B. Möller, P. O’Hearn, T. Hoare, “On algebra of program correctness and incorrectness”, Relational and algebraic methods in computer science, Lecture Notes in Computer Science, 13027, Springer, 2021, 325–343 | DOI | MR
[6] Q. L. Le, A. Raad, J. Villard, J. Berdine, D. Dreyer, P. W. O’Hearn, “Finding real bugs in big programs with incorrectness logic”, Proceedings of the ACM on Programming Languages, 6, OOPSLA1 (2022), 1–27 | MR
[7] P. W. O’Hearn, “Incorrectness logic”, Proceedings of the ACM on Programming Languages, 4, POPL (2019), 1–32 | DOI
[8] A. Raad, J. Berdine, H. Dang, D. Dreyer, P. O’Hearn, J. Villard, “Local reasoning about the presence of bugs: incorrectness separation logic”, Computer aided verification, 12225 (2020), 225–252, Springer | MR | Zbl
[9] J. Vanegue, “Adversarial logic”, Static analysis, Lecture Notes in Computer Science, 13790, Springer, 2022, 422–448 | DOI | MR
[10] M. Milanese, F. Ranzato, “Local completeness logic on Kleene algebra with tests”, Static analysis, Lecture Notes in Computer Science, 13790, Springer, 2022, 350–371 | DOI | MR
[11] B. Bruni, R. Giacobazzi, R. Gori, F. Ranzato, “A correctness and incorrectness program logic”, Journal of the ACM, 70:2 (2023), 1–45 | DOI | MR
[12] P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, P. Gardner, “Exact separation logic: towards bridging the gap between verification and bug-finding”, 37th european conference on object-oriented programming (ECOOP 2023), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 19:1–19:27
[13] N. Zilberstein, D. Dreyer, A. Silva, “Outcome logic: a unifying foundation of correctness and incorrectness reasoning”, Proceedings of the ACM on Programming Languages, 7, OOPSLA1 (2023), 522–550 | DOI
[14] T. Dardinier, P. Müller, Hyper hoare logic: (Dis-)Proving program hyperproperties (extended version), 2023, arXiv: 2301.10037 | MR
[15] A. Humenberger, M. Jaroschek, L. Kovács, “Invariant generation for multi-path loops with polynomial assignments”, Verification, model checking, and abstract interpretation, Lecture Notes in Computer Science, 10747, Springer, 2018, 226–246 | DOI | MR | Zbl
[16] S. Chakraborty, A. Gupta, D. Unadkat, “Full-program induction: verifying array programs sans loop invariants”, International Journal on Software Tools for Technology Transfer, 24:5 (2022), 843–888 | DOI
[17] V. A. Nepomniaschy, “Symbolic method of verification of definite iterations over altered data structures”, Programming and Computer Software, 31:1 (2005), 1–9 | DOI | MR | Zbl
[18] V. A. Nepomniaschy, I. S. Anureev, I. N. Mikhailov, A. V. Promskii, “Towards verification of c programs. C-light language and its formal semantics”, Programming and Computer Software, 28:6 (2002), 314–323 | DOI | MR
[19] V. A. Nepomniaschy, I. S. Anureev, A. V. Promskii, “Towards verification of c programs: axiomatic semantics of the C-kernel language”, Programming and Computer Software, 29:6 (2003), 338–350 | DOI | MR | Zbl
[20] I. V. Maryasov, V. A. Nepomniaschy, A. V. Promsky, D. A. Kondratyev, “Automatic c program verification based on mixed axiomatic semantics”, Automatic Control and Computer Sciences, 48:7 (2014), 407–414 | DOI
[21] D. A. Kondratyev, V. A. Nepomniaschy, “Automation of c program deductive verification without using loop invariants”, Programming and Computer Software, 48:5 (2022), 331–346 | DOI | MR
[22] D. A. Kondratyev, A. V. Promsky, “The complex approach of the C-lightVer system to the automated error localization in c-programs”, Automatic Control and Computer Sciences, 54:7 (2020), 728–739 | DOI | MR
[23] J. S. Moore, “Milestones from the pure lisp theorem prover to ACL2”, Formal Aspects of Computing, 31:6 (2019), 699–732 | DOI | MR | Zbl
[24] D. A. Kondratyev, I. V. Maryasov, V. A. Nepomniaschy, “The automation of c program verification by the symbolic method of loop invariant elimination”, Automatic Control and Computer Sciences, 53:7 (2019), 653–662 | DOI | MR
[25] L. Zhang, B. L. Kaminski, “Quantitative strongest post: a calculus for reasoning about the flow of quantitative information”, Proceedings of the ACM on Programming Languages, 6, OOPSLA1 (2022), 1–29
[26] S. Dailler, D. Hauzar, C. Marché, Y. Moy, “Instrumenting a weakest precondition calculus for counterexample generation”, Journal of Logical and Algebraic Methods in Programming, 99 (2018), 97–113 | DOI | MR | Zbl
[27] B. Becker, C. B. Lourenço, C. Marché, “Explaining counterexamples with giant-step assertion checking”, Proceedings of the 6th workshop on formal integrated development environment, 2021, 82–88
[28] Q. L. Le, J. Sun, L. H. Pham, S. Qin, S2TD: a separation logic verifier that supports reasoning of the absence and presence of bugs, 2022, arXiv: 2209.09327
[29] T. Dardinier, G. Parthasarathy, P. Müller, “Verification-preserving inlining in automatic separation logic verifiers”, Proceedings of the ACM on Programming Languages, 7, OOPSLA1 (2023), 789–818 | DOI
[30] R. Könighofer, R. Toegl, R. Bloem, “Automatic error localization for software using deductive verification”, Hardware and software: verification and testing, Lecture Notes in Computer Science, 8855, Springer, 2014, 92–98 | DOI
[31] P. Baudin, F. Bobot, D. Bühler, L. Correnson, F. Kirchner, N. Kosmatov, A. Maroneze, V. Perrelle, V. Prevosto, J. Signoles, N. Williams, “The dogged pursuit of bug-free c programs: the Frama-C software analysis platform”, Communications of the ACM, 64:8 (2021), 56–68 | DOI
[32] M. R. Gadelha, F. Monteiro, L. Cordeiro, D. Nicole, “ESBMC v6.0: verifying c programs using $k$-induction and invariant inference”, Tools and algorithms for the construction and analysis of systems, Lecture Notes in Computer Science, 11429, Springer, 2019, 209–213 | DOI
[33] S. Löwe, “CPAchecker with explicit-value analysis based on CEGAR and interpolation”, Tools and algorithms for the construction and analysis of systems, Lecture Notes in Computer Science, 7795, Springer, 2013, 610–612 | DOI
[34] D. Beyer, T. Lemberger, “CPA-SymExec: efficient symbolic execution in CPAchecker”, Proceedings of the 33rd acm/ieee international conference on automated software engineering, 2018, 900–903 | DOI
[35] C. Cadar, M. Nowack, “KLEE symbolic execution engine in 2019”, International Journal on Software Tools for Technology Transfer, 23:6 (2021), 867–870 | DOI
[36] B. Jacobs, J. Kiniry, M. Warnier, “Java program verification challenges”, Formal methods for components and objects, Lecture Notes in Computer Science, 2852, Springer, 2003, 202–219 | DOI