Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2023_30_3_a1, author = {N. S. Lagutina and K. V. Lagutina and A. M. Brederman and N. N. Kasatkina}, title = {Text classification by {CEFR} levels using machine learning methods and {BERT} language model}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {202--213}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a1/} }
TY - JOUR AU - N. S. Lagutina AU - K. V. Lagutina AU - A. M. Brederman AU - N. N. Kasatkina TI - Text classification by CEFR levels using machine learning methods and BERT language model JO - Modelirovanie i analiz informacionnyh sistem PY - 2023 SP - 202 EP - 213 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a1/ LA - ru ID - MAIS_2023_30_3_a1 ER -
%0 Journal Article %A N. S. Lagutina %A K. V. Lagutina %A A. M. Brederman %A N. N. Kasatkina %T Text classification by CEFR levels using machine learning methods and BERT language model %J Modelirovanie i analiz informacionnyh sistem %D 2023 %P 202-213 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a1/ %G ru %F MAIS_2023_30_3_a1
N. S. Lagutina; K. V. Lagutina; A. M. Brederman; N. N. Kasatkina. Text classification by CEFR levels using machine learning methods and BERT language model. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 3, pp. 202-213. http://geodesic.mathdoc.fr/item/MAIS_2023_30_3_a1/
[1] E. del Gobbo, A. Guarino, B. Cafarelli, L. Grilli, P. Limone, “Automatic evaluation of open-ended questions for online learning. A systematic mapping”, Studies in Educational Evaluation, 77, Elsevier, 2023, 101258 | DOI
[2] N. Galichev, P. Shirogorodskaya, “Problema avtomaticheskogo izmereniya slozhnyh konstruktov cherez otkrytye zadaniya”, Hxi mezhdunarodnaya nauchno-prakticheskaya konferenciya molodyh issledovatelej obrazovaniya, Novosibirskij gosudarstvennyj pedagogicheskij universitet, 2022, 695–697 (in Russian)
[3] L. E. Adamova, O. Surikova, I. G. Bulatova, O. O. Varlamov, “Application of the mivar expert system to evaluate the complexity of texts”, News of the Kabardin-Balkar scientific center of RAS, 2021, no. 2, 11–29, Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
[4] D. Ramesh, S. K. Sanampudi, “An automated essay scoring systems: a systematic literature review”, Artificial Intelligence Review, 55:3 (2022), 2495–2527 | DOI | MR
[5] K. P. Yancey, G. Laflair, A. Verardi, J. Burstein, “Rating short L2 essays on the CEFR scale with GPT-4”, Proceedings of the 18th workshop on innovative use of nlp for building educational applications (bea 2023), 2023, 576–584 | DOI
[6] A. Gasparetto, M. Marcuzzo, A. Zangari, A. Albarelli, “A survey on text classification algorithms: From text to predictions”, Information, 13:2 (2022), 83, MDPI | DOI
[7] V. Ramnarain-Seetohul, V. Bassoo, Y. Rosunally, “Similarity measures in automated essay scoring systems: a ten-year review”, Education and Information Technologies, 27:4 (2022), 5573–5604 | DOI
[8] Y. Yang, J. Zhong, “Automated essay scoring via example-based learning”, Web engineering, Springer, 2021, 201–208 | DOI
[9] N. N. Mikheeva, E. V. Shulyndina, “Features of training written Internet communication in a non-linguistic university”, Tambov University Review. Series: Humanities, 28:2 (2023), 405–414 | DOI
[10] V. J. Schmalz, A. Brutti, “Automatic assessment of English CEFR levels using BERT embeddings”, Proceedings of the eighth italian conference on computational linguistics, CEUR Workshop Proceedings, 2021
[11] Y. Arase, S. Uchida, T. Kajiwara, “CEFR-based sentence difficulty annotation and assessment”, Proceedings of the 2022 conference on empirical methods in natural language processing, 2022, 6206–6219 | DOI
[12] R. Jalota, P. Bourgonje, J. Van Sas, H. Huang, “Mitigating learnerese effects for CEFR classification”, Proceedings of the 17th workshop on innovative use of nlp for building educational applications (BEA 2022), 2022, 14–21 | DOI
[13] T. Gaillat, A. Simpkin, N. Ballier, B. Stearns, A. Sousa, M. Bouyé, M. Zarrouk, “Predicting CEFR levels in learners of English: the use of microsystem criterial features in a machine learning approach”, ReCALL, 34:2 (2022), 130–146 | DOI
[14] E. Kerz, D. Wiechmann, Y. Qiao, E. Tseng, M. Ströbel, “Automated classification of written proficiency levels on the CEFR-scale through complexity contours and RNNs”, Proceedings of the 16th workshop on innovative use of nlp for building educational applications, 2021, 199–209
[15] P. Yang, L. Li, F. Luo, T. Liu, X. Sun, “Enhancing topic-to-essay generation with external commonsense knowledge”, Proceedings of the 57th annual meeting of the association for computational linguistics, 2019, 2002–2012 | DOI
[16] E. Mayfield, A. W. Black, Should you fine-tune BERT for automated essay scoring?, Proceedings of the fifteenth workshop on innovative use of nlp for building educational applications, 2020, 151–162 | DOI
[17] J. M. Imperial, “BERT embeddings for automatic readability assessment”, Proceedings of the international conference on recent advances in natural language processing (ranlp 2021), 2021, 611–618 | DOI
[18] C. Bryant, M. Felice, Ø E. Andersen, T. Briscoe, “The BEA-2019 shared task on grammatical error correction”, Proceedings of the fourteenth workshop on innovative use of nlp for building educational applications, Association for Computational Linguistics, 2019, 52–75 | DOI
[19] K. V. Lagutina, A. M. Manakhova, “Automated search and analysis of the stylometric features that describe the style of the prose of 19th–21st centuries”, Automatic Control and Computer Sciences, 55:7 (2021), 866–876, Springer | DOI | MR
[20] A. M. Manakhova, N. S. Lagutina, “Analysis of the impact of the stylometric characteristics of different levels for the verification of authors of the prose”, Modeling and Analysis of Information Systems, 28:3 (2021), 260–279 (in Russian) | DOI | MR
[21] J. Devlin, M. Chang, K. Lee, K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding”, Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: human language technologies, v. 1, 2019, 4171–4186 | MR
[22] V. Sanh, L. Debut, J. Chaumond, T. Wolf, DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, 2020, arXiv: 1910.01108