Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2023_30_2_a3, author = {S. D. Glyzin and E. A. Marushkina}, title = {Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {160--169}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_2_a3/} }
TY - JOUR AU - S. D. Glyzin AU - E. A. Marushkina TI - Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity JO - Modelirovanie i analiz informacionnyh sistem PY - 2023 SP - 160 EP - 169 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2023_30_2_a3/ LA - ru ID - MAIS_2023_30_2_a3 ER -
%0 Journal Article %A S. D. Glyzin %A E. A. Marushkina %T Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity %J Modelirovanie i analiz informacionnyh sistem %D 2023 %P 160-169 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2023_30_2_a3/ %G ru %F MAIS_2023_30_2_a3
S. D. Glyzin; E. A. Marushkina. Algorithms for asymptotic and numerical modeling of oscillatory modes in the simplest ring of generators with asymmetric nonlinearity. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 2, pp. 160-169. http://geodesic.mathdoc.fr/item/MAIS_2023_30_2_a3/
[1] S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “Chaos phenomena in a circle of three unidirectionally connected oscillators”, Computational Mathematics and Mathematical Physics, 46:10 (2006), 1724–1736 | DOI | MR
[2] S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “The buffer phenomenon in ring-like chains of unidirectionally connected generators”, Izvestiya: Mathematics, 78:4 (2014), 708–743 | DOI | MR | Zbl
[3] A. Y. Kolesov and N. K. Rozov, “Yavlenie bufernosti v RCLG-avtogeneratore: teoreticheskij analiz i rezul'taty eksperimenta”, Trudy MIAN, 233, 2001, 153–207 | Zbl
[4] A. S. Dmitriev and V. Y. Kislov, Chaotic oscillations in radiophysics and electronics, Nauka, 1989 | MR
[5] A. S. Dmitriev, A. I. Panas, and S. O. Starkov, “Dinamicheskij haos kak paradigma sovremennyh sistem svyazi”, Uspekhi sovremennoj radioelektroniki (Zarubezhnaya radioelektronika), 1997, no. 10, 4–26
[6] A. S. Dmitriev and S. O. Starkov, “Peredacha soobshchenij s ispol'zovaniem haosa i klassicheskaya teoriya informacii”, Uspekhi sovremennoj radioelektroniki (Zarubezhnaya radioelektronika), 1998, no. 11, 4–32
[7] A. S. Dmitriev and A. I. Panas, Dynamic chaos: novel type of information carrier for communication systems, Fizmatlit, 2002
[8] B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, 1985 | MR
[9] V. V. Migulin, V. I. Medvedev, E. R. Mustel', and V. N. Parygin, Osnovy teorii kolebanij, Nauka, 1988
[10] A. Y. Kolesov and N. K. Rozov, Invariantnye tory nelinejnyh volnovyh uravnenij, Fizmatlit, 2004
[11] D. S. Glyzin, S. D. Glyzin, A. Y. Kolesov, and N. K. Rozov, “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differential Equations, 41:2 (2005) | DOI | MR
[12] S. P. Kuznecov, Dinamicheskij haos, Kurs lekcij, Fizmatlit, 2001
[13] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer Science Business Media, 1983 | MR | Zbl