Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2023_30_2_a1, author = {V. V. Vasilchikov}, title = {Recursive-parallel algorithm for solving the maximum common subgraph problem}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {128--139}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_2_a1/} }
TY - JOUR AU - V. V. Vasilchikov TI - Recursive-parallel algorithm for solving the maximum common subgraph problem JO - Modelirovanie i analiz informacionnyh sistem PY - 2023 SP - 128 EP - 139 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2023_30_2_a1/ LA - ru ID - MAIS_2023_30_2_a1 ER -
V. V. Vasilchikov. Recursive-parallel algorithm for solving the maximum common subgraph problem. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 2, pp. 128-139. http://geodesic.mathdoc.fr/item/MAIS_2023_30_2_a1/
[1] M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness”, Siam Review, 24:1 (1982), 90–91 | DOI | MR
[2] R. Hoffmann, C. McCreesh, and C. Reilly, “Between Subgraph Isomorphism and Maximum Common Subgraph”, Proceedings of the AAAI Conference on Artificial Intelligence, 31:1 (2017), 3907–3914 | DOI
[3] S. N. Ndiaye and C. Solnon, “CP Models for Maximum Common Subgraph Problems”, Lecture Notes in Computer Science, 6876, 2011, 637–644 | DOI
[4] D. Conte, P. Foggia, and M. Vento, “Challenging complexity of maximum common subgraph detection algorithms: A performance analysis of three algorithms on a wide database of graphs”, Journal of Graph Algorithms and Applications, 11:1 (2007), 99–143 | DOI | MR | Zbl
[5] J. J. McGregor, “Backtrack search algorithms and the maximal common sub-graph problem”, Software: Practice and Experience, 12:1 (1982), 23–34 | DOI | Zbl
[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An Improved Algorithm for Matching Large Graphs”, Proc. of the 3rd IAPR-TC-15 International Workshop on Graph-based Representations, 2001, 149–159 | MR
[7] P. J. Durand, R. Pasari, J. W. Baker, and C.-che Tsai, “An efficient algorithm for similarity analysis of molecules”, Internet Journal of Chemistry, 2:17 (1999), 1–16
[8] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph”, Communications of the ACM, 16:9 (1973), 575–577 | DOI | Zbl
[9] A. Marcelli, S. Quer, and G. Squillero, The Maximum Common Subgraph Problem: A Portfolio Approach, 2019, arXiv: 1908.06418 | MR
[10] V. V. Vasilchikov, “Parallel algorithm for solving the graph isomorphism problem”, Modeling and analysis of information systems, 27:1 (2020), 86–94 | DOI | MR | Zbl
[11] V. V. Vasilchikov, “Recursive-Parallel Algorithm for Solving the Graph-Subgraph Isomorphism Problem”, Modeling and analysis of information systems, 29:1 (2022), 30–43 | DOI | MR
[12] V. V. Vasilchikov, Sredstva parallelnogo programmirovaniya dlya vychislitelnykh sistem s dinamicheskoy balansirovkoy zagruzki, YarGU, Yaroslavl, 2001
[13] V. V. Vasilchikov, “On the recursive-parallel programming for the .NET framework”, Automatic Control and Computer Sciences, 48 (2014), 575–580 | DOI