Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2023_30_1_a5, author = {I. V. Paramonov and A. Yu. Poletaev}, title = {Annotation of text corpora by sentiment and presence of irony within a project of citizen science}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {86--100}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_1_a5/} }
TY - JOUR AU - I. V. Paramonov AU - A. Yu. Poletaev TI - Annotation of text corpora by sentiment and presence of irony within a project of citizen science JO - Modelirovanie i analiz informacionnyh sistem PY - 2023 SP - 86 EP - 100 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2023_30_1_a5/ LA - ru ID - MAIS_2023_30_1_a5 ER -
%0 Journal Article %A I. V. Paramonov %A A. Yu. Poletaev %T Annotation of text corpora by sentiment and presence of irony within a project of citizen science %J Modelirovanie i analiz informacionnyh sistem %D 2023 %P 86-100 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2023_30_1_a5/ %G ru %F MAIS_2023_30_1_a5
I. V. Paramonov; A. Yu. Poletaev. Annotation of text corpora by sentiment and presence of irony within a project of citizen science. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 1, pp. 86-100. http://geodesic.mathdoc.fr/item/MAIS_2023_30_1_a5/
[1] V. Masoumi, M. Salehi, H. Veisi, G. Haddadian, V. Ranjbar, and M. Sahebdel, TeleCrowd: A Crowdsourcing Approach to Create Informal to Formal Text Corpora, 2020, arXiv: 2004.11771 [cs.SI]
[2] E. Mitiagina, M. Borodataya, E. Volchenkova, N. Ershova, M. Luchinina, and E. Kotelnikov, “Russian Text Corpus of Intimate Partner Violence: Annotation Through Crowdsourcing”, 7th International Conference on Electronic Governance and Open Society: Challenges in Eurasia, EGOSE 2020, Springer, 2020, 306–321 | DOI
[3] S. Mohammad, “A practical guide to sentiment annotation: Challenges and solutions”, Proceedings of the 7th workshop on computational approaches to subjectivity, sentiment and social media analysis, Association for Computational Linguistics, 2016, 174–179 | DOI
[4] S. M. Mohammad, P. Sobhani, and S. Kiritchenko, “Stance and Sentiment in Tweets”, Special Section of the ACM Transactions on Internet Technology on Argumentation in Social Media, 17:3, 1–23 | MR
[5] B. R. Chakravarthi, V. Muralidaran, R. Priyadharshini, and J. P. McCrae, “Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text”, Proceedings of the 1st Joint SLTU and CCURL Workshop, SLTU-CCURL 2020, 2020, 202–210
[6] K. Krippendorff, Content analysis: an introduction to its methodology, SAGE Publications, Inc, Thousand Oaks, CA, 2013
[7] Y. Zhao, B. Qin, and T. Liu, “Creating a fine-grained corpus for chinese sentiment analysis”, IEEE Intelligent Systems, 30:1 (2014), 36–43 | DOI
[8] J. Cohen, “A coefficient of agreement for nominal scales”, Educational and psychological measurement, 20:1 (1960), 37–46 | DOI
[9] J. Bu et al., “ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction”, Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, 2069–2079
[10] M. Navas-Loro, V. Rodríguez-Doncel, I. Santana-Perez, and A. S'anchez, “Spanish Corpus for Sentiment Analysis Towards Brands”, Speech and Computer, SPECOM 2017, 2017, 680–689 | DOI
[11] J. L. Fleiss, “Measuring nominal scale agreement among many raters”, Psychological bulletin, 76:5 (1971), 378 | DOI
[12] A. Rogers, A. Romanov, A. Rumshisky, S. Volkova, M. Gronas, and A. Gribov, “RuSentiment: An enriched sentiment analysis dataset for social media in Russian”, Proceedings of the 27th international conference on computational linguistics, 2018, 755–763
[13] T. V. Zherebilo, Slovar lingvisticheskih terminov, OOO Piligrim, Nazran, 2010
[14] K. Krippendorff, Computing Krippendorff's Alpha-Reliability, , 2008 (Accessed: Jan. 17, 2023) https://repository.upenn.edu/asc_papers/43/
[15] J. Hughes, “krippendorffsalpha: An R package for measuring agreement using Krippendorff's alpha coefficient”, The R Journal, 13:1 (2021), 413–425 | DOI
[16] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data–recommendations for the use of performance metrics”, 2013 Humaine association conference on affective computing and intelligent interaction, 2013, 245–251 | MR
[17] A. Y. Poletaev and I. V. Paramonov, “Recursive sentiment detection algorithm for Russian sentences”, Modelirovanie i Analiz Informatsionnykh Sistem, 29:2 (2022), 134–147
[18] S. Smetanin and M. Komarov, “Deep transfer learning baselines for sentiment analysis in Russian”, Information Processing Management, 58:3 (2021), 102484 | DOI
[19] R. Artstein and M. Poesio, “Inter-coder agreement for computational linguistics”, Computational linguistics, 34:4 (2008), 555–596 | DOI