The polynomial algorithm of finding the shortest path in a divisible multiple graph
Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 4, pp. 372-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect $2$ or $(k + 1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. Divisible multiple graphs are characterized by a possibility to divide the graph into $k$ parts, which are adjusted on the linked edges and which have no common edges. Each part is an ordinary graph. As for an ordinary graph, we can define the integer function of the length of an edge for a multiple graph and set the problem of the shortest path joining two vertices. Any multiple path is a union of $k$ ordinary paths, which are adjusted on the linked edges of all multiple and multi-edges. In the article, we show that the problem of the shortest path is polynomial for a divisible multiple graph. The corresponding polynomial algorithm is formulated. Also we suggest the modification of the algorithm for the case of an arbitrary multiple graph. This modification has an exponential complexity in the parameter $k$.
Keywords: multiple graph, multiple path, shortest path, reachability set
Mots-clés : divisible graph, polynomial algorithm.
@article{MAIS_2022_29_4_a5,
     author = {A. V. Smirnov},
     title = {The polynomial algorithm of finding the shortest path in a divisible multiple graph},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {372--387},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a5/}
}
TY  - JOUR
AU  - A. V. Smirnov
TI  - The polynomial algorithm of finding the shortest path in a divisible multiple graph
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2022
SP  - 372
EP  - 387
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a5/
LA  - ru
ID  - MAIS_2022_29_4_a5
ER  - 
%0 Journal Article
%A A. V. Smirnov
%T The polynomial algorithm of finding the shortest path in a divisible multiple graph
%J Modelirovanie i analiz informacionnyh sistem
%D 2022
%P 372-387
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a5/
%G ru
%F MAIS_2022_29_4_a5
A. V. Smirnov. The polynomial algorithm of finding the shortest path in a divisible multiple graph. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 4, pp. 372-387. http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a5/

[1] A. V. Smirnov, “The shortest path problem for a multiple graph”, Automatic Control and Computer Sciences, 52:7 (2018), 625–633 | DOI

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, 3rd, The MIT Press, McGraw-Hill Book Company, 2009

[3] C. Berge, Graphs and hypergraphs, North-Holland Publishing Company, 1973

[4] A. Basu, R. W. Blanning, “Metagraphs in workflow support systems”, Decision Support Systems, 25:3 (1999), 199–208 | DOI

[5] A. Basu, R. W. Blanning, Metagraphs and their applications, Integrated Series in Information Systems, 15, Springer US, 2007

[6] V. S. Rublev, A. V. Smirnov, “Flows in multiple networks”, Yaroslavsky Pedagogichesky Vestnik, 3:2 (2011), 60–68

[7] A. V. Smirnov, “The problem of finding the maximum multiple flow in the divisible network and its special cases”, Automatic Control and Computer Sciences, 50:7 (2016), 527–535 | DOI

[8] L. R. Ford, D. R. Fulkerson, Flows in networks, Princeton University Press, 1962

[9] V. S. Roublev, A. V. Smirnov, “The problem of integer-valued balancing of a three-dimensional matrix and algorithms of its solution”, Modeling and Analysis of Information Systems, 17:2 (2010), 72–98

[10] A. V. Smirnov, “Network model for the problem of integer balancing of a four-dimensional matrix”, Automatic Control and Computer Sciences, 51:7 (2017), 558–566 | DOI

[11] A. V. Smirnov, “Spanning tree of a multiple graph”, Journal of Combinatorial Optimization, 43:4 (2022), 850–869 | DOI

[12] E. W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische Mathematik, 1:1 (1959), 269–271 | DOI