Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_4_a3, author = {D. D. Zafievsky and N. S. Lagutina and O. A. Melnikova and A. Y. Poletaev}, title = {A model for automated business writing assessment}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {348--365}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a3/} }
TY - JOUR AU - D. D. Zafievsky AU - N. S. Lagutina AU - O. A. Melnikova AU - A. Y. Poletaev TI - A model for automated business writing assessment JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 348 EP - 365 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a3/ LA - ru ID - MAIS_2022_29_4_a3 ER -
%0 Journal Article %A D. D. Zafievsky %A N. S. Lagutina %A O. A. Melnikova %A A. Y. Poletaev %T A model for automated business writing assessment %J Modelirovanie i analiz informacionnyh sistem %D 2022 %P 348-365 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a3/ %G ru %F MAIS_2022_29_4_a3
D. D. Zafievsky; N. S. Lagutina; O. A. Melnikova; A. Y. Poletaev. A model for automated business writing assessment. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 4, pp. 348-365. http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a3/
[1] A. Al-Bargi, “Exploring online writing assessment amid Covid-19: challenges and opportunities from teachers’ perspectives”, Arab World English Journal, 2022, 3–21, SocArXiv
[2] N. P. Soboleva, M. A. Nilova, “Obuchenie pis'mu studentov gumanitarnyh special'nostej s ispol'zovaniem sovremennyh obrazovatel'nyh tekhnologij”, Kazanskij vestnik molodyh uchyonyh, 2:5 (8) (2018), 57–59
[3] M. Fareed, A. Ashraf, M. Bilal, “Esl learners’ writing skills: problems, factors and suggestions”, Journal of education and social sciences, 4:2 (2016), 81–92
[4] K. N. A. Al-Mwzaiji, A. A. F. Alzubi, “Online self-evaluation: the EFL writing skills in focus”, Asian-Pacific Journal of Second and Foreign Language Education, 7:1 (2022), 1–16, Springer
[5] M. A. Hussein, H. Hassan, M. Nassef, “Automated language essay scoring systems: a literature review”, PeerJ Computer Science, 5 (2019), e208, PeerJ Inc.
[6] H. John Bernardin, S. Thomason, M. Ronald Buckley, J. S. Kane, “Rater rating-level bias and accuracy in performance appraisals: the impact of rater personality, performance management competence, and rater accountability”, Human Resource Management, 55:2 (2016), 321–340, Wiley Online Library
[7] Z. Ke, V. Ng, “Automated essay scoring: a survey of the state of the art”, Ijcai, 19 (2019), 6300–6308
[8] M. Uto, “A review of deep-neural automated essay scoring models”, Behaviormetrika, 48:2 (2021), 459–484, Springer
[9] S. Vajjala, “Automated assessment of non-native learner essays: investigating the role of linguistic features”, International Journal of Artificial Intelligence in Education, 28:1 (2018), 79–105, Springer
[10] K. Taghipour, H. T. Ng, “A neural approach to automated essay scoring”, Proceedings of the 2016 conference on empirical methods in natural language processing, 2016, 1882–1891
[11] L. Xia, J. Liu, Z. Zhang, “Automatic essay scoring model based on two-layer bi-directional long-short term memory network”, Proceedings of the 2019 3rd international conference on computer science and artificial intelligence, 2019, 133–137
[12] M. Uto, M. Okano, “Robust neural automated essay scoring using item response theory”, International conference on artificial intelligence in education, Springer, 2020, 549–561
[13] Y. Tay, M. Phan, L. A. Tuan, S. C. Hui, “Skipflow: incorporating neural coherence features for end-to-end automatic text scoring”, Proceedings of the AAAI conference on artificial intelligence, 32:1 (2018), 5948–5955
[14] Y. Farag, H. Yannakoudakis, T. Briscoe, “Neural automated essay scoring and coherence modeling for adversarially crafted input”, Proceedings of the 2018 conference of the north american chapter of the association for computational linguistics: human language technologies, Association for Computational Linguistics (ACL), 2018, 263–271
[15] Y. Yang, J. Zhong, “Automated essay scoring via example-based learning”, International conference on web engineering, Springer, 2021, 201–208
[16] E. Mayfield, A. W. Black, Should you fine-tune bert for automated essay scoring?, Proceedings of the fifteenth workshop on innovative use of NLP for building educational applications, 2020, 151–162
[17] R. Yang, J. Cao, Z. Wen, Y. Wu, X. He, “Enhancing automated essay scoring performance via fine-tuning pre-trained language models with combination of regression and ranking”, Findings of the association for computational linguistics: EMNLP 2020, 2020, 1560–1569
[18] M. Uto, Y. Xie, M. Ueno, “Neural automated essay scoring incorporating handcrafted features”, Proceedings of the 28th international conference on computational linguistics, 2020, 6077–6088
[19] I. Aomi, E. Tsutsumi, M. Uto, M. Ueno, “Integration of automated essay scoring models using item response theory”, International conference on artificial intelligence in education, Springer, 2021, 54–59
[20] W. Zhu, Y. Sun, “Automated essay scoring system using multi-model machine learning”, CS IT Conference Proceedings, 10:12 (2020), 109–117
[21] S. M. Darwish, S. K. Mohamed, “Automated essay evaluation based on fusion of fuzzy ontology and latent semantic analysis”, International conference on advanced machine learning technologies and applications, Springer, 2019, 566–575
[22] Y. Salim, V. Stevanus, E. Barlian, A. C. Sari, D. Suhartono, “Automated english digital essay grader using machine learning”, 2019 ieee international conference on engineering, technology and education, TALE, IEEE, 2019, 1–6
[23] R. Wilkens, D. Seibert, X. Wang, T. Fran{ç}ois, “Mwe for essay scoring english as a foreign language”, 2nd workshop on tools and resources for reading difficulties (READI), 2022, 62–69
[24] D. Ramesh, S. K. Sanampudi, “An automated essay scoring systems: a systematic literature review”, Artificial Intelligence Review, Springer, 2021, 1–33