Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_4_a2, author = {K. V. Lagutina}, title = {Classification of russian texts by genres based on modern embeddings and rhythm}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {334--347}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a2/} }
TY - JOUR AU - K. V. Lagutina TI - Classification of russian texts by genres based on modern embeddings and rhythm JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 334 EP - 347 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a2/ LA - ru ID - MAIS_2022_29_4_a2 ER -
K. V. Lagutina. Classification of russian texts by genres based on modern embeddings and rhythm. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 4, pp. 334-347. http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a2/
[1] L. A. Kochetova, V. V. Popov, “Research of axiological dominants in press release genre based on automatic extraction of key words from corpus”, Nauchnyi dialog, 2019, no. 6
[2] B. Kessler, G. Numberg, H. Schütze, “Automatic detection of text genre”, Proceedings of the 35th annual meeting of the association for computational linguistics and eighth conference of the european chapter of the association for computational linguistics, 1997, 32–38
[3] ğ Onan, “An ensemble scheme based on language function analysis and feature engineering for text genre classification”, Journal of Information Science, 44:1 (2018), 28–47
[4] Z. Dai, R. Huang, “A joint model for structure-based news genre classification with application to text summarization”, Findings of the association for computational linguistics, ACL-IJCNLP 2021, 2021, 3332–3342
[5] K. V. Lagutina, N. S. Lagutina, E. I. Boychuk, “Text classification by genre based on rhythm features”, Modeling and Analysis of Information Systems, 28:3 (2021), 280–291
[6] K. Lagutina, A. Poletaev, N. Lagutina, E. Boychuk, I. Paramonov, “Automatic extraction of rhythm figures and analysis of their dynamics in prose of 19th-21st centuries”, Proceedings of the 26th Conference of Open Innovations Association FRUCT, IEEE, 2020, 247–255
[7] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, “Deep contextualized word representations”, Proceedings of the 2018 conference of the north american chapter of the association for computational linguistics: human language technologies, v. 1, long papers, 2018, 2227–2237
[8] J. Devlin, M. Chang, K. Lee, K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding”, Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics: human language technologies, v. 1, long and short papers, 2019, 4171–4186
[9] C. Wang, P. Nulty, D. Lillis, “A comparative study on word embeddings in deep learning for text classification”, Proceedings of the 4th international conference on natural language processing and information retrieval, 2020, 37–46
[10] Y. Kuratov, M. Arkhipov, “Adaptation of deep bidirectional multilingual transformers for Russian language”, Komp'juternaja lingvistika i intellektual'nye tehnologii, 2019, 333–339
[11] A. Kutuzov, L. Pivovarova et al., “RusSiftEval: a shared task on semantic shift detection for Russian”, papers from the annual international conference “Dialogue”, Computational linguistics and intellectual technologies, 20, 2021, 533–545
[12] J. Rodina, Y. Trofimova, A. Kutuzov, E. Artemova, “ELMo and BERT in semantic change detection for Russian”, International conference on analysis of images, social networks and texts, Springer, 2020, 175–186
[13] A. V. Glazkova, “Topical classification of text fragments accounting for their nearest context”, Automation and Remote Control, 81:12 (2020), 2262–2276, Springer
[14] I. A. Batraeva, A. D. Nartsev, A. S. Lezgyan, “Using the analysis of semantic proximity of words in solving the problem of determining the genre of texts within deep learning”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie vychislitelnaja tehnika i informatika, 2020, no. 50, 14–22
[15] V. Bocharov, S. Alexeeva, D. Granovsky, E. Protopopova, M. Stepanova, A. Surikov, “Crowdsourcing morphological annotation”, Computational linguistics and intellectual technologies: papers from the annual international conference “Dialogue”, v. 1, 2013, 109–114
[16] K. Lagutina, N. Lagutina, E. Boychuk, V. Larionov, I. Paramonov, “Authorship verification of literary texts with rhythm features”, 28th conference of open innovations association FRUCT, IEEE, 2021, 240–251