Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_4_a1, author = {A. V. Glazkova and O. V. Zakharova and A. V. Zakharov and N. N. Moskvina and T. R. Enikeev and A. N. Hodyrev and V. K. Borovinskiy and I. N. Pupysheva}, title = {Detecting mentions of green practices in social media based on text classification}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {316--332}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a1/} }
TY - JOUR AU - A. V. Glazkova AU - O. V. Zakharova AU - A. V. Zakharov AU - N. N. Moskvina AU - T. R. Enikeev AU - A. N. Hodyrev AU - V. K. Borovinskiy AU - I. N. Pupysheva TI - Detecting mentions of green practices in social media based on text classification JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 316 EP - 332 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a1/ LA - ru ID - MAIS_2022_29_4_a1 ER -
%0 Journal Article %A A. V. Glazkova %A O. V. Zakharova %A A. V. Zakharov %A N. N. Moskvina %A T. R. Enikeev %A A. N. Hodyrev %A V. K. Borovinskiy %A I. N. Pupysheva %T Detecting mentions of green practices in social media based on text classification %J Modelirovanie i analiz informacionnyh sistem %D 2022 %P 316-332 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a1/ %G ru %F MAIS_2022_29_4_a1
A. V. Glazkova; O. V. Zakharova; A. V. Zakharov; N. N. Moskvina; T. R. Enikeev; A. N. Hodyrev; V. K. Borovinskiy; I. N. Pupysheva. Detecting mentions of green practices in social media based on text classification. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 4, pp. 316-332. http://geodesic.mathdoc.fr/item/MAIS_2022_29_4_a1/
[1] O. Zakharova, I. Pupysheva, T. Payusova, A. Zakharov, L. Sulkarnaeva, “YGreen Values in Crowdfunding Projects”, Glocalism, 2021, no. 1, 6 | DOI
[2] Jekologicheskaja povestka: za desjatT mesjacev do vyborov v Gosdumu (analiticheskij doklad), VCIOM, 2020-12-30 (Accessed: 2021-03-18) http://www.wciom.ru
[3] Y. V. Ermolaeva, M. V. Rybakova, “Civil social practices of waste recycling in Russia (Moscow and Kazan)”, IIOAB Journal, 10:S1 (2019), 153–156
[4] O. Zakharova, T. Payusova, I. Akhmedova, L. Suvorova, “Green Practices: Ways to Investigation”, Sotsiologicheskie issledovaniya, 2021, no. 4, 25–36 | DOI
[5] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, R. Procter, “Detection and resolution of rumours in social media: A survey”, ACM Computing Surveys (CSUR), 51:2 (2018), 1–36 | DOI
[6] D. Rogers, A. Preece, M. Innes, I. Spasic, “Real-time text classification of user-generated content on social media: Systematic review”, IEEE Transactions on Computational Social Systems, 2021 | DOI
[7] Q. Li, H. Peng, J. Li, C. Xia, R. Yang, L. Sun, P. S. Yu, L. He, “A Survey on Text Classification: From Traditional to Deep Learning”, ACM Transactions on Intelligent Systems and Technology (TIST), 13:2 (2022), 1–41 | DOI
[8] F. C. Permana, Y. Rosmansyah, A. S. Abdullah, “Naive Bayes as opinion classifier to evaluate students satisfaction based on student sentiment in Twitter Social Media”, in Journal of Physics: Conference Series, 893 (2017), 012–051 | DOI
[9] V. A. Fitri, R. Andreswari, M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naive Bayes, decision tree, and random forest algorithm”, Procedia Computer Science, 161 (2019), 765–772 | DOI
[10] N. R. Fatahillah, P. Suryati, C. Haryawan, “YImplementation of Naive Bayes classifier algorithm on social media (Twitter) to the teaching of Indonesian hate speech”, 2017 International Conference on Sustainable Information Engineering and Technology, SIET, IEEE, 2017, 128–131 | DOI
[11] K. K. Kiilu, G. Okeyo, R. Rimiru, K. Ogada, “Using Naive Bayes algorithm in detection of hate tweets”, International Journal of Scientific and Research Publications, 8:3 (2018), 99–107 | DOI
[12] Z. Peng, Q. Hu, J. Dang, “Multi-kernel SVM based depression recognition using social media data”, International Journal of Machine Learning and Cybernetics, 10:1 (2019), 43–57 | DOI
[13] P. Karthika, R. Murugeswari, R. Manoranjithem, “Sentiment analysis of social media network using random forest algorithm”, 2019 IEEE international conference on intelligent techniques in control, optimization and signal processing, INCOS, IEEE, 2019, 1–5 | DOI
[14] B. Y. Pratama, R. Sarno, “Personality classification based on Twitter text using Naive Bayes, KNN and SVM”, 2015 International Conference on Data and Software Engineering, ICoDSE, IEEE, 2015, 170–174 | DOI
[15] S. Hochreiter, J. Schmidhuber, “Long short-term memory”, Neural computation, 9:8 (1997), 1735–1780
[16] Y. Ma, H. Peng, T. Khan, E. Cambria, A. Hussain, “Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis”, Cognitive Computation, 10:4 (2018), 639–650 | DOI
[17] M. Tripathi, “Sentiment analysis of Nepali COVID19 tweets using NB SVM and LSTM”, Journal of Artificial Intelligence, 3:03 (2021), 151–168 | DOI
[18] R. Monika, S. Deivalakshmi, B. Janet, “Sentiment analysis of US airlines tweets using LSTM/RNN”, 2019 IEEE 9th International Conference on Advanced Computing, IACC, IEEE, 2019, 92–95 | DOI
[19] P. Badjatiya, S. Gupta, M. Gupta, V. Varma, “Deep learning for hate speech detection in tweets”, Proceedings of the 26th international conference on World Wide Web companion, 2017, 759–760 | DOI
[20] A. Bisht, A. Singh, H. Bhadauria, J. Virmani et al, “Detection of hate speech and offensive language in Twitter data using LSTM model”, Recent trends in image and signal processing in computer vision, Springer, 2020, 243–264 | DOI
[21] V. Rupapara, F. Rustam, A. Amaar, P. B. Washington, E. Lee, I. Ashraf, “Deepfake tweets classification using stacked Bi-LSTM and words embedding”, PeerJ Computer Science, 7 (2021), e745 | DOI
[22] A. Wani, I. Joshi, S. Khandve, V. Wagh, R. Joshi, “Evaluating deep learning approaches for COVID19 fake news detection”, International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, Springer, 2021, 153–163 | DOI
[23] S. Lai, L. Xu, K. Liu, J. Zhao, “Recurrent convolutional neural networks for text classification”, Twenty-ninth AAAI conference on artificial intelligence, 2015 | DOI
[24] S. Bansal, “A Mutli-Task Mutlimodal Framework for Tweet Classification Based on CNN (Grand Challenge)”, 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), IEEE, 2020, 456–460 | DOI
[25] M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, U. R. Acharya, “ABCDM: An attention-based bidirectional CNN-RNN deep model for sentiment analysis”, Future Generation Computer Systems, 115 (2021), 279–294 | DOI
[26] J. Wang, L. C. Yu, K. R. Lai, X. Zhang, “Dimensional sentiment analysis using a regional CNN-LSTM model”, Proceedings of the 54th annual meeting of the association for computational linguistics, v. 2, Short papers, 2016, 225–230 | DOI
[27] A. M. Alayba, V. Palade, M. England, R. Iqbal, “A combined CNN and LSTM model for Arabic sentiment analysis”, International cross-domain conference for machine learning and knowledge extraction, Springer, 2018, 179–191 | DOI
[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, “Attention is all you need”, Advances in neural information processing systems, 30 (2017)
[29] J. Devlin, M. W. Chang, K. Lee, K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, v. 1, 2019, 4171–4186 | DOI
[30] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, RoBERTa: A robustly optimized BERT pretraining approach, 2019, arXiv: 1907.11692 | DOI
[31] A. El Mahdaouy, A. El Mekki, K. Essefar, A. Skiredj, I. Berrada, “CS-UM6P at SemEval-2022 Task 6: Transformer-based Models for Intended Sarcasm Detection in English and Arabic”, Proceedings of the 16th International Workshop on Semantic Evaluation, SemEval-2022, 2022, 844–850 | DOI
[32] M. Du, S. D. Gollapalli, S. K. Ng, “NUS-IDS at CheckThat! 2022: Identifying Check-worthiness of Tweets using CheckthaT5”, Working Notes of CLEF, 2022
[33] A. Glazkova, M. Glazkov, T. Trifonov, “g2tmn at constraint@ aaai2021: exploiting CT-BERT and ensembling learning for COVID-19 fake news detection”, International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, Springer, 2021, 116–127 | DOI
[34] Y. Rubtsova, “Constructing a corpus for sentiment classification training”, Software Systems, 78:1 (2015), 72–109 | DOI
[35] I. Bolshakova, K. Lagutina, “Avtomaticheskaja klassifikacija tekstov na russkom jazyke s pomoshhTju tonalTnogo slovarja”, Zametki po informatike i matematike, 14, 2022, 6–13
[36] A. Kotelnikova, D. Paschenko, E. Razova, “Lexicon-based methods and BERT model for sentiment analysis of Russian text corpora”, CEUR Workshop Proceedings, 2021, 73–81
[37] N. Loukachevitch, Y. Rubtsova, “SentiRuEval-2016: overcoming time gap and data sparsity in tweet sentiment analysis”, Computational Linguistics and Intellectual Technologies, 2016, 416–426
[38] A. Chernyaev, A. Spryiskov, A. Ivashko, Y. Bidulya, “A rumor detection in Russian tweets”, International Conference on Speech and Computer, Springer, 2020, 108–118 | DOI
[39] E. Mikhalkova, Y. Karyakin, I. Glukhikh, “Large Scale Retrieval of Social Network Pages by Interests of their Followers”, Computational Science, ICCS 2018, Springer International Publishing, Cham, 2018, 234–246 | DOI
[40] E. Pronoza, P. Panicheva, O. Koltsova, P. Rosso, “Detecting ethnicity-targeted hate speech in Russian social media texts”, Information Processing Management, 58 (2021), 102674 | DOI
[41] K. V. Lagutina, N. S. Lagutina, E. I. Boychuk, “Text classification by genre based on rhythm features”, Modeling and analysis of information systems, 2021, 280–291 | DOI
[42] K. Svetlov, K. Platonov, “Sentiment analysis of posts and comments in the accounts of Russian politicians on the social network”, 2019 25th Conference of Open Innovations Association, FRUCT, IEEE, 2019, 299–305 | DOI
[43] I. Kozitsin, A. Chkhartishvili, A. Marchenko, D. Norkin, S. Osipov, I. Uteshev, V. Goiko, R. Palkin, M. Myagkov, “Modeling political preferences of Russian users exemplified by the social network Vkontakte”, Mathematical Models and Computer Simulations, 12:2 (2020), 185–194 | DOI
[44] P. Basina, V. Goiko, E. Petrov, V. Bakulin, “Classification community publications of the VKontakte for assessing the quality of life of the population”, Computational Linguistics and Intellectual Technologies, 2022, 18 | DOI
[45] A. Sboev, I. Moloshnikov, A. Naumov, A. Levochkina, R. Rybka, “the Russian Language Corpus and a Neural Network to Analyse Internet Tweet Reports About COVID-19”, PoS, DLCP2021 (2021), 017 | DOI
[46] M. J. Farrell, L. Brierley, A. Willoughby, A. Yates, N. Mideo, “Past and future uses of text mining in ecology and evolution”, Proceedings of the Royal Society B, 28:1975 (2022), 20212721 | DOI
[47] S. C. Anderson, P. R. Elsen, B. B. Hughes, R. K. Tonietto, M. C. Bletz, D. A. Gill, M. A. Holgerson, S. E. Kuebbing, C. McDonough MacKenzie, M. H. Meek et al, “Trends in ecology and conservation over eight decades”, Frontiers in Ecology and the Environment, 19:5 (2021), 274–282 | DOI
[48] J. Knott, E. LaRue, S. Ward, E. McCallen, K. Ordonez, F. Wagner, I. Jo, J. Elliott, S. Fei, “A roadmap for exploring the thematic content of ecology journals”, Ecosphere, 10:8 (2019), e02801 | DOI
[49] F. R. Dayeen, A. S. Sharma, S. Derrible, “A text mining analysis of the climate change literature in industrial ecology”, Journal of Industrial Ecology, 24:2 (2020), 276–284 | DOI
[50] F. Romero-Perdomo, J. D. Carvajalino-Umana, J. L. Moreno-Gallego, N. Ardila, M. A. Gonzalez-Curbelo, “Research Trends on Climate Change and Circular Economy from a Knowledge Mapping Perspective”, Sustainability, 14:1 (2022), 521 | DOI
[51] O. J. Luiz, J. D. Olden, M. J. Kennard, D. A. Crook, M. M. Douglas, T. M. Saunders, A. J. King, “Trait-based ecology of fishes: A quantitative assessment of literature trends and knowledge gaps using topic modelling”, Fish and Fisheries, 20:6 (2019), 1100–1110 | DOI
[52] R. Cornford, S. Deinet, A. De Palma, S. L. Hill, L. McRae, B. Pettit, V. Marconi, A. Purvis, R. Freeman, “YFast, scalable, and automated identification of articles for biodiversity and macroecological datasets”, Global Ecology and Biogeography, 30:1 (2021), 339–347 | DOI
[53] N. Le Guillarme, W. thuiller, “TaxoNERD: deep neural models for the recognition of taxonomic entities in the ecological and evolutionary literature”, Methods in Ecology and Evolution, 13:3 (2022), 625–641 | DOI
[54] N. T. Nguyen, R. S. Gabud, S. Ananiadou, “YCOPIOUS: A gold standard corpus of named entities towards extracting species occurrence from biodiversity literature”, Biodiversity data journal, 2019, no. 7 | DOI
[55] R. Bossy, L. Deleger, E. Chaix, M. Ba, C. Nedellec, “Bacteria biotope at BioNLP open shared tasks”, Proceedings of the 5th workshop on BioNLP open shared tasks, 2019, 121–131 | DOI
[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al, “Scikit-learn: Machine learning in Python”, Journal of machine Learning research, 12 (2011), 2825–2830
[57] Y. Kuratov, M. Arkhipov, “Adaptation of deep bidirectional multilingual transformers for Russian language”, KompTjuternaja Lingvistika i IntellektualTnye Tehnologii, 2019, 333–339
[58] P. Lison, J. Tiedemann, OpenSubtitles2016: Extracting large parallel corpora from movie and TV subtitles, 2016
[59] T. Shavrina, O. Shapovalova, “To the methodology of corpus construction for machine learning: Taiga syntax tree corpus and parser”, Proceedings of the “Corpora”, 2017, 78–84
[60] A. Fenogenova, “Russian paraphrasers: Paraphrase with transformers”, Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing, 2021, 11–19
[61] I. Bondarenko, Contrastive fine-tuning to improve generalization in deep NER, 2022 | DOI