Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_3_a5, author = {I. P. Buzhinsky and A. A. Shalyto}, title = {Towards neural routing with verified bounds on performance}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {228--245}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a5/} }
TY - JOUR AU - I. P. Buzhinsky AU - A. A. Shalyto TI - Towards neural routing with verified bounds on performance JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 228 EP - 245 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a5/ LA - en ID - MAIS_2022_29_3_a5 ER -
I. P. Buzhinsky; A. A. Shalyto. Towards neural routing with verified bounds on performance. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 3, pp. 228-245. http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a5/
[1] D. Mukhutdinov, A. Filchenkov, A. Shalyto, and V. Vyatkin, “Multi-agent deep learning for simultaneous optimization for time and energy in distributed routing system”, Future Generation Computer Systems, 94 (2019), 587–600 | DOI
[2] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing networks: A reinforcement learning approach”, Proceedings of the 6th International Conference on Neural Information Processing Systems, 1993, 671–678
[3] G. Black and V. Vyatkin, “Intelligent component-based automation of baggage handling systems with IEC 61499”, IEEE Transactions on Automation Science and Engineering, 7:2 (2009), 337–351 | DOI
[4] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial examples”, Proceedings of the 35th International Conference on Machine Learning, 2018, 284–293
[5] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual classification”, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 1625–1634
[6] C. Szegedy, W. Zaremba, I. Sutskever, J. B. Estrach, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks”, International Conference on Learning Representations, 2014
[7] R. Drechsler (ed.), Advanced formal verification, 2004 | MR | Zbl
[8] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri, “Optimization and abstraction: A synergistic approach for analyzing neural network robustness”, Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, 2019, 731–744 | DOI
[9] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output Range Analysis for Deep Feedforward Neural Networks”, NASA Formal Methods, eds. A. Dutle, C. Muñoz, and A. Narkawicz, Springer International Publishing, Cham, 2018, 121–138 | DOI
[10] Y. Y. Elboher, J. Gottschlich, and G. Katz, “An abstraction-based framework for neural network verification”, Computer Aided Verification, 2020, 43–65 | MR | Zbl
[11] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification of deep neural networks”, Computer Aided Verification, 2017, 3–29 | MR
[12] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient SMT solver for verifying deep neural networks”, Computer Aided Verification, 2017, 97–117 | MR | Zbl
[13] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljić, et al., “The Marabou framework for verification and analysis of deep neural networks”, Computer Aided Verification, 2019, 443–452 | MR
[14] M. Johnstone, D. Creighton, and S. Nahavandi, “Status-based routing in baggage handling systems: Searching verses learning”, IEEE Transactions on Systems, Man, and Cybernetics, Part C, 40:2 (2009), 189–200 | DOI
[15] A. N. Tarau, B. De Schutter, and H. Hellendoorn, “Model-based control for route choice in automated baggage handling systems”, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40:3 (2010), 341–351 | DOI | MR
[16] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi, “Measuring neural net robustness with constraints”, Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016, 2613–2621
[17] A. Fawzi, H. Fawzi, and O. Fawzi, “Adversarial vulnerability for any classifier”, Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, 1178–1187
[18] A. Fawzi, O. Fawzi, and P. Frossard, “Analysis of classifiers' robustness to adversarial perturbations”, Machner Learning, 107:3 (2018), 481–508 | DOI | MR | Zbl
[19] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: a simple and accurate method to fool deep neural networks”, IEEE Conference on Computer Vision and Pattern Recognition, 2016, 2574–2582
[20] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks”, International Conference on Learning Representations, 2017 | MR
[21] A. Boopathy, T.-W. Weng, P.-Y. Chen, S. Liu, and L. Daniel, “CNN-Cert: An efficient framework for certifying robustness of convolutional neural networks”, Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, 2019, 3240–3247 | DOI
[22] P.-y. Chiang, R. Ni, A. Abdelkader, C. Zhu, C. Studor, and T. Goldstein, “Certified defenses for adversarial patches”, International Conference on Learning Representations, 2020
[23] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified robustness to adversarial examples with differential privacy”, IEEE S P, 2019, 656–672
[24] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified Defenses against Adversarial Examples”, International Conference on Learning Representations, 2018
[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing Atari with deep reinforcement learning”, NIPS Deep Learning Workshop, 2013
[26] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, Adaptive Computation and Machine Learning series, 135, MIT press, 1998 | MR
[27] E. Bacci and D. Parker, “Probabilistic Guarantees for Safe Deep Reinforcement Learning”, Formal Modeling and Analysis of Timed Systems, eds. N. Bertrand and N. Jansen, Springer International Publishing, Cham, 2020, 231–248 | DOI | MR
[28] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learning via policy extraction”, Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, 2494–2504
[29] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Case study: verifying the safety of an autonomous racing car with a neural network controller”, Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, 2020, 1–7 | MR
[30] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig: verifying safety properties of hybrid systems with neural network controllers”, Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control, 2019, 169–178 | MR
[31] Y. Kazak, C. Barrett, G. Katz, and M. Schapira, “Verifying deep-RL-driven systems”, Proceedings of the 2019 Workshop on Network Meets AI ML, 2019, 83–89 | DOI
[32] L. Oakley, A. Oprea, and S. Tripakis, “Adversarial Robustness of AI Agents Acting in Probabilistic Environments”, Workshop on Foundations of Computer Security, 2020
[33] H.-D. Tran, F. Cai, M. L. Diego, P. Musau, T. T. Johnson, and X. Koutsoukos, “Safety verification of cyber-physical systems with reinforcement learning control”, ACM Transactions on Embedded Computer Systems, 18:5s (2019), 1–22 | DOI | MR
[34] A. Bianco and L. De Alfaro, “Model checking of probabilistic and nondeterministic systems”, Foundations of Software Technology and Theoretical Computer Science, 1995, 499–513 | DOI | MR | Zbl
[35] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering”, Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, 2002, 585–591
[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A.Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning”, Nature, 518:7540 (2015), 529–533 | DOI
[37] J. R. Norris, Markov chains, Cambridge University Press, 1998 | MR | Zbl
[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception architecture for computer vision”, IEEE Conference on Computer Vision and Pattern Recognition, 2016, 2818–2826
[39] C. Barrett and C. Tinelli, “Satisfiability Modulo Theories”, Handbook of Model Checking, eds. E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Springer International Publishing, Cham, 2018, 305–343 | DOI | MR | Zbl
[40] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver”, Tools and Algorithms for the Construction and Analysis of Systems, 2008, 337–340
[41] A. Meurer, C. P. Smith, M. Paprocki, O. Čert{\i}k, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, et al., “SymPy: symbolic computing in Python”, PeerJ Computer Science, 3 (2017), e103 | DOI