Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_3_a3, author = {S. N. Chukanov and I. S. Chukanov}, title = {Formation of machine learning features based on the construction of tropical functions}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {200--209}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a3/} }
TY - JOUR AU - S. N. Chukanov AU - I. S. Chukanov TI - Formation of machine learning features based on the construction of tropical functions JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 200 EP - 209 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a3/ LA - en ID - MAIS_2022_29_3_a3 ER -
%0 Journal Article %A S. N. Chukanov %A I. S. Chukanov %T Formation of machine learning features based on the construction of tropical functions %J Modelirovanie i analiz informacionnyh sistem %D 2022 %P 200-209 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a3/ %G en %F MAIS_2022_29_3_a3
S. N. Chukanov; I. S. Chukanov. Formation of machine learning features based on the construction of tropical functions. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 3, pp. 200-209. http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a3/
[1] G. Carlsson, “Topology and data”, Bulletin of the American Mathematical Society, 46:2 (2009), 307–309 | DOI | MR
[2] H. Edelsbrunner and J. Harer, Computational topology: an introduction, American Mathematical Soc., 2010 | MR | Zbl
[3] A. J. Zomorodian, Topology for computing, Cambridge UP, 2005 | MR | Zbl
[4] R. Ghrist, “Barcodes: the persistent topology of data”, Bulletin of the American Mathematical Society, 15:1 (2008), 61–75 | DOI | MR
[5] S. N. Chukanov, “Comparison of objects' images based on computational topology methods”, Informatics and Automation, 18:3 (2019), 1043–1065 | DOI | MR
[6] S. N. Chukanov, “The Comparison of Diffeomorphic Images based on the Construction of Persistent Homology”, Automatic Control and Computer Sciences, 54:7 (2020), 758–771 | DOI | MR
[7] A. Hatcher, Algebraic Topology, Cambridge UP, 2005 | MR
[8] C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl, “Deep learning with topological signatures”, Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, 1633–1643
[9] P. Bubenik, “The persistence landscape and some of its properties”, Topological Data Analysis, 2020, 97–117 | DOI | MR | Zbl
[10] P. Bubenik, “Statistical Topological Data Analysis Using Persistence Landscapes”, Journal of Machine Learning Research, 16:1 (2015), 77–102 | MR | Zbl
[11] S. Kalisnik, “Tropical coordinates on the space of persistence barcodes”, Foundations of Computational Mathematics, 19:1 (2019), 101–129 | DOI | MR | Zbl
[12] R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis: a kernel perspective”, Advances in Neural Information Processing Systems, 28 (2015), 3052–3060
[13] V. P. Maslov, “Motivation and essence of the term "Tropical mathematics"”, Russian Journal of Mathematical Physics, 27:4 (2020), 478–483 | DOI | MR
[14] A. Aadcock, E. Carlsson, and G. Carlsson, “The Ring of Algebraic Functions on Persistence Bar Codes”, Homology, Homotopy and Applicationse, 18 (2016), 381–402 | DOI | MR