Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_3_a2, author = {Yu. V. Kosolapov and F. S. Pevnev and M. V. Yagubyants}, title = {On the construction of self-complementary codes and their application in the problem of information hiding}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {182--198}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a2/} }
TY - JOUR AU - Yu. V. Kosolapov AU - F. S. Pevnev AU - M. V. Yagubyants TI - On the construction of self-complementary codes and their application in the problem of information hiding JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 182 EP - 198 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a2/ LA - ru ID - MAIS_2022_29_3_a2 ER -
%0 Journal Article %A Yu. V. Kosolapov %A F. S. Pevnev %A M. V. Yagubyants %T On the construction of self-complementary codes and their application in the problem of information hiding %J Modelirovanie i analiz informacionnyh sistem %D 2022 %P 182-198 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a2/ %G ru %F MAIS_2022_29_3_a2
Yu. V. Kosolapov; F. S. Pevnev; M. V. Yagubyants. On the construction of self-complementary codes and their application in the problem of information hiding. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 3, pp. 182-198. http://geodesic.mathdoc.fr/item/MAIS_2022_29_3_a2/
[1] D. Jungnickel and V. D. Tonchev, “The classification of antipodal two-weight linear codes”, Finite Fields and Their Applications, 50 (2018), 372–381 | DOI | MR | Zbl
[2] T. Klove and S. Yari, “Proper self-complementary codes”, Proceedings of the 2010 International Symposium On Information Theory Its Applications, 2010, 118–122 | DOI
[3] E. M. Gabidulin and M. Bossert, “Codes Resistant to the Phase Rotation”, Proceedings of the 4-th Simposium on Communication and Applications, 1997, 65–84
[4] Y. V. Kosolapov and F. S. Pevnev, “Error-tolerant ZZW-construction”, Siberian Electronic Mathematical Reports, 18:2 (2021), 1506–1516 | MR
[5] L. D. Grey, “Some bounds for error-correcting codes”, IRE Transactions on Information Theory, 8:3 (1962), 200–202 | DOI | MR | Zbl
[6] G. McGuire, “Qyasi-Symmetric Designs and Codes Meeting the Grey-Rankin Bound”, Journal of Combinatorial Theory, Series A, 78:2 (1997), 280–291 | DOI | MR | Zbl
[7] I. Bouyukliev, S. Bouyuklieva, and S. Dodunekov, “On binary self-complementary [120, 9, 56] codes having an automorphism of order 3 and associated SDP designs”, Problems of Information Transmission, 43 (2007), 89–96 | DOI | MR | Zbl
[8] S. Dodunekov, S. Encheva, and S. Kapralov, “On the [28, 7, 12] binary self-complementary codes and their residuals”, Designs, Codes and Cryptography, 4 (1994), 57–67 | DOI | MR | Zbl
[9] I. Asemota, Binary Self-Complementary Codes, B. Sc., Benson Idahosa University, Nigeri, 2016
[10] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, 2nd Edition, Wiley, 2006
[11] R. Hill and D. Newton, “Optimal ternary linear codes”, Designs, Codes and Cryptography, 2 (1992), 137–157 | DOI | MR | Zbl
[12] M. Tomlinson, C. J. Tjhai, M. A. Ambroze, M. Ahmed, and M. Jibril, Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications, Springer Nature, 2017 | MR | Zbl
[13] V. M. Deundyak, A. E. Maevskij, and N. C. Mogilevskaya, Metody pomekhoustojchivoj zashchity dannyh, Izdatelstvo yuzhnogo federalnogo universiteta, Rostov-na-Donu, 2014 (in Russian)
[14] D. B. Jaffe, Binary Linear Codes: New Results on Nonexistence, 1996 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.628&rep=rep1&type=pdf