Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_2_a4, author = {A. Yu. Poletaev and I. V. Paramonov}, title = {Recursive sentiment detection algorithm for {Russian} sentences}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {134--147}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a4/} }
TY - JOUR AU - A. Yu. Poletaev AU - I. V. Paramonov TI - Recursive sentiment detection algorithm for Russian sentences JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 134 EP - 147 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a4/ LA - ru ID - MAIS_2022_29_2_a4 ER -
A. Yu. Poletaev; I. V. Paramonov. Recursive sentiment detection algorithm for Russian sentences. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 2, pp. 134-147. http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a4/
[1] I. Paramonov and A. Poletaev, “Adaptation of Semantic Rule-Based Sentiment Analysis Approach for Russian Language”, Proceedings of 30th Conference of Open Innovations Association FRUCT, 2021, 155–164 | DOI
[2] T. Wilson, J. Wiebe, and P. Hoffmann, “Recognizing contextual polarity in phrase-level sentiment analysis”, Proceedings of human language technology conference and conference on empirical methods in natural language processing, 2005, 347–354
[3] L. K.-W. Tan, J.-C. Na, Y.-L. Theng, and K. Chang, “Sentence-level sentiment polarity classification using a linguistic approach”, Proceedings ofInternational Conference on Asian Digital Libraries, 2011, 77–87
[4] Y. Xie, Z. Chen, K. Zhang, Y. Cheng, D. K. Honbo, A. Agrawal, and A. N. Choudhary, “MuSES: multilingual sentiment elicitation system for social media data”, IEEE Intelligent Systems, 29:4 (2014), 34–42 | DOI
[5] S. Smetanin and M. Komarov, “Deep transfer learning baselines for sentiment analysis in Russian”, Information Processing Management, 58:3 (2021), 102484 | DOI
[6] M. A. M. Shaikh, H. Prendinger, and M. Ishizuka, “Sentiment assessment of text by analyzing linguistic features and contextual valence assignment”, Applied Artificial Intelligence, 22:6 (2008), 558–601 | DOI
[7] O. Appel, F. Chiclana, J. Carter, and H. Fujita, “A hybrid approach to the sentiment analysis problem at the sentence level”, Knowledge-Based Systems, 108 (2016), 110–124 | DOI
[8] S. Kahane and N. Mazziotta, “Syntactic Polygraphs. A Formalism Extending Both Constituency and Dependency”, Proceedings of the 14th Meeting on the Mathematics of Language 2015 Recursive Sentiment Detection Algorithm for Russian Sentences, 2015, 152–164 | MR | Zbl
[9] Y. Gao, J.-G. Lou, and D. Zhang, A Hybrid Semantic Parsing Approach for Tabular Data Analysis, 2019, arXiv: 1910.10363v2 [cs.AI]
[10] J. Li, H. Tan, and M. Bansal, “Improving Cross-Modal Alignment in Vision Language Navigation via Syntactic Information”, Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, 1041–1050
[11] Z. Marji, A. Nighojkar, and J. Licato, “Probing the Natural Language Inference Task with Automated Reasoning Tools”, The Thirty-Third International Flairs Conference, 2020
[12] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts, “Recursive deep models for semantic compositionality over a sentiment treebank”, Proceedings of the 2013 conference on empirical methods in natural language processing, 2013, 1631–1642
[13] K. S. Tai, R. Socher, and C. D. Manning, “Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks”, Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, v. 1, Long Papers, 2015
[14] Y. Zhang and Y. Zhang, “Tree communication models for sentiment analysis”, Proceedings of the 57th annual meeting of the association for computational linguistics, 2019, 3518–3527 | DOI
[15] D. Yin, T. Meng, and K.-W. Chang, “SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics”, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, 3695–3706 | DOI
[16] N. V. Loukachevitch and A. V. Levchick, “Creating a General Russian Sentiment Lexicon”, Proceedings of the Tenth International Conference on Language Resources and Evaluation, LREC'16, 2016, 1171–1176