Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_2_a3, author = {M. A. Kosterin and I. V. Paramonov}, title = {Neural network-based sentiment classification of {Russian} sentences into four classes}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {116--133}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a3/} }
TY - JOUR AU - M. A. Kosterin AU - I. V. Paramonov TI - Neural network-based sentiment classification of Russian sentences into four classes JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 116 EP - 133 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a3/ LA - ru ID - MAIS_2022_29_2_a3 ER -
%0 Journal Article %A M. A. Kosterin %A I. V. Paramonov %T Neural network-based sentiment classification of Russian sentences into four classes %J Modelirovanie i analiz informacionnyh sistem %D 2022 %P 116-133 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a3/ %G ru %F MAIS_2022_29_2_a3
M. A. Kosterin; I. V. Paramonov. Neural network-based sentiment classification of Russian sentences into four classes. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 2, pp. 116-133. http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a3/
[1] C. Potts, Z. Wu, A. Geiger, and D. Kiela, Dynasent: A dynamic benchmark for sentiment analysis, 2020, arXiv: 2012.15349 [cs.CL]
[2] F. Hamborg and K. Donnay, “NewsMTSC: a dataset for (multi-) target-dependent sentiment classification in political news articles”, Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, Association for Computational Linguistics (ACL), 2021, 1663–1675
[3] B. Liu, “Sentiment analysis and opinion mining”, Synthesis lectures on human language technologies, 5:1 (2012), 1–167 | DOI | MR
[4] O. Habimana, Y. Li, R. Li, X. Gu, and G. Yu, “Sentiment analysis using deep learning approaches: an overview”, Science China Information Sciences, 63:1 (2020), 1–36 | DOI | MR
[5] S. Smetanin and M. Komarov, “Deep transfer learning baselines for sentiment analysis in Russian”, Information Processing Management, 58:3 (2021), 102484 | DOI
[6] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models are unsupervised multitask learners, Technical report, OpenAI, 2019
[7] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “XLNet: Generalized autoregressive pretraining for language understanding”, Advances in neural information processing systems, 32 (2019), 5754–5764
[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018, arXiv: 1810.04805v2 [cs.CL]
[9] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, A convolutional neural network for modelling sentences, 2014, arXiv: 1404.2188 [cs.CL]
[10] I. Paramonov and A. Poletaev, “Adaptation of Semantic Rule-Based Sentiment Analysis Approach for Russian Language”, Proceedings of 30th Conference of Open Innovations Association FRUCT, IEEE, 2021, 155–164 | DOI
[11] K. Kenyon-Dean, E. Ahmed, S. Fujimoto, J. Georges-Filteau, C. Glasz, B. Kaur, A. Lalande, S. Bhanderi, R. Belfer, N. Kanagasabai, et al., “Sentiment analysis: It's complicated!”, Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, v. 1, Long Papers, 2018, 1886–1895
[12] X. Tan, Y. Cai, and C. Zhu, “Recognizing conflict opinions in aspect-level sentiment classification with dual attention networks”, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP, 2019, 3426–3431 | MR
[13] M. Soleymani, D. Garcia, B. Jou, B. Schuller, S.-F. Chang, and M. Pantic, “A survey of multimodal sentiment analysis”, Image and Vision Computing, 65 (2017), 3–14 | DOI
[14] L. A. M. Oberländer and R. Klinger, “An analysis of annotated corpora for emotion classification in text”, Proceedings of the 27th International Conference on Computational Linguistics, 2018, 2104–2119
[15] A. Radford, R. Jozefowicz, and I. Sutskever, Learning to generate reviews and discovering sentiment, 2017, arXiv: 1704.01444v2 [cs.LG] | Zbl
[16] Y. Wang, M. Huang, L. Zhao, and X. Zhu, “Attention-based LSTM for aspect-level sentiment classification”, Proceedings of the 2016 conference on empirical methods in natural language processing, 2016, 606–615 | DOI
[17] P. Chen, Z. Sun, L. Bing, and W. Yang, “Recurrent attention network on memory for aspect sentiment analysis”, Proceedings of the 2017 conference on empirical methods in natural language processing, 2017, 452–461 | DOI
[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need”, Advances in neural information processing systems, 2017, 5998–6008
[19] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts, “Recursive deep models for semantic compositionality over a sentiment treebank”, Proceedings of the 2013 conference on empirical methods in natural language processing, 2013, 1631–1642
[20] S. Smetanin and M. Komarov, “Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks”, IEEE 21st Conference on Business Informatics, CBI, v. 1, 2019, 482–486