Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_2_a1, author = {M. V. Nevskij}, title = {On some estimate for the norm of an interpolation projector}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {92--103}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/} }
M. V. Nevskij. On some estimate for the norm of an interpolation projector. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 2, pp. 92-103. http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/
[1] M. V. Nevskii, Geometricheskie Ocenki v Polinomial'noj Interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012, 218 pp. (in Russian)
[2] M. Hall Jr., Combinatorial Theory, Blaisdall Publishing Company, Mass., Toronto, London, 1967 | MR | Zbl
[3] K. J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, Princeton, 2007 | MR | Zbl
[4] P. K. Manjhi and M. K. Rama, “Some new examples of circulant partial Hadamard matrices of type $4- H (k \times n)$”, Advances and Applications in Mathematical Sciences, 21:5 (2022), 2559–2564
[5] M. Hudelson, V. Klee, and D. Larman, “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra and its applications, 241–243 (1996), 519–598 | DOI | MR | Zbl
[6] M. V. Nevskii, “Minimal projectors and largest simplices”, Modeling and Analysis of Information Systems, 14:1 (2007), 3–10
[7] J. Hadamard, “Résolution d'une question relative aux déterminants”, Bull. Sciences Math. (2), 17 (1893), 240–246
[8] G. Barba, “Intorno al. teorema di Hadamard sui determinanti a valore massimo”, Glornale Mat. Battaglini (3), 71 (1933), 70–86 | Zbl
[9] M. V. Nevskii, “Estimates for the minimal norm of a projector in linear interpolation over the vertices of an n-dimensional cube”, Modeling and Analysis of Information Systems, 10:1 (2003), 9–19
[10] M. V. Nevskii, “On a certain relation for the minimal norm of an interpolation projector”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43
[11] M. V. Nevskii and A. Y. Ukhalov, “On optimal interpolation by linear functions on an n-dimensional cube”, Modeling and Analysis of Information Systems, 25:3 (2018), 291–311 | DOI | MR
[12] I. S. Kudryavcev, E. A. Ozerova, and A. Y. Ukhalov, “Novye ocenki dlya norm minimal'nyh proektorov”, Sovremennye Problemy Matematiki i Informatiki, 17, P. G. Demidov Yaroslavl State University, Yaroslavl, 2017, 74–81 (in Russian)
[13] L. Fejes Tót, Regular Figures, Macmillan/Pergamon, New York, 1964 | MR
[14] D. Slepian, “The content of some extreme simplices”, Pacific J. Math., 31 (1969), 795–808 | DOI | MR | Zbl
[15] D. Vandev, “A minimal volume ellipsoid around a simplex”, C. R. Acad. Bulg. Sci., 45:6, 37–40 | MR | Zbl
[16] M. V. Nevskii and A. Y. Ukhalov, “Linear interpolation on a Euclidean ball in $\mathbb{R}^n$”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296 | DOI | MR | Zbl