On some estimate for the norm of an interpolation projector
Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 2, pp. 92-103

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q_n=[0,1]^n$ be the unit cube in ${\mathbb R}^n$ and let $C(Q_n)$ be a space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max_{x\in Q_n}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ denote a set of polynomials in $n$ variables of degree $\leq 1$, i. e., a set of linear functions on ${\mathbb R}^n$. The interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in Q_n$ is defined by the equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right)$, $j=1,$ $\ldots,$ $ n+1$. Let $\|P\|_{Q_n}$ be the norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$. If $n+1$ is an Hadamard number, then there exists a non-degenerate regular simplex having the vertices at vertices of $Q_n$. We discuss some approaches to get inequalities of the form $||P||_{Q_n}\leq c\sqrt{n}$ for the norm of the corresponding projector $P$.
Mots-clés : Hadamard matrix, norm.
Keywords: regular simplex, linear interpolation, projector
@article{MAIS_2022_29_2_a1,
     author = {M. V. Nevskij},
     title = {On some estimate for the norm of an interpolation projector},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {92--103},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/}
}
TY  - JOUR
AU  - M. V. Nevskij
TI  - On some estimate for the norm of an interpolation projector
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2022
SP  - 92
EP  - 103
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/
LA  - ru
ID  - MAIS_2022_29_2_a1
ER  - 
%0 Journal Article
%A M. V. Nevskij
%T On some estimate for the norm of an interpolation projector
%J Modelirovanie i analiz informacionnyh sistem
%D 2022
%P 92-103
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/
%G ru
%F MAIS_2022_29_2_a1
M. V. Nevskij. On some estimate for the norm of an interpolation projector. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 2, pp. 92-103. http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/