On some estimate for the norm of an interpolation projector
Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 2, pp. 92-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q_n=[0,1]^n$ be the unit cube in ${\mathbb R}^n$ and let $C(Q_n)$ be a space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max_{x\in Q_n}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ denote a set of polynomials in $n$ variables of degree $\leq 1$, i. e., a set of linear functions on ${\mathbb R}^n$. The interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in Q_n$ is defined by the equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right)$, $j=1,$ $\ldots,$ $ n+1$. Let $\|P\|_{Q_n}$ be the norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$. If $n+1$ is an Hadamard number, then there exists a non-degenerate regular simplex having the vertices at vertices of $Q_n$. We discuss some approaches to get inequalities of the form $||P||_{Q_n}\leq c\sqrt{n}$ for the norm of the corresponding projector $P$.
Mots-clés : Hadamard matrix, norm.
Keywords: regular simplex, linear interpolation, projector
@article{MAIS_2022_29_2_a1,
     author = {M. V. Nevskij},
     title = {On some estimate for the norm of an interpolation projector},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {92--103},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/}
}
TY  - JOUR
AU  - M. V. Nevskij
TI  - On some estimate for the norm of an interpolation projector
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2022
SP  - 92
EP  - 103
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/
LA  - ru
ID  - MAIS_2022_29_2_a1
ER  - 
%0 Journal Article
%A M. V. Nevskij
%T On some estimate for the norm of an interpolation projector
%J Modelirovanie i analiz informacionnyh sistem
%D 2022
%P 92-103
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/
%G ru
%F MAIS_2022_29_2_a1
M. V. Nevskij. On some estimate for the norm of an interpolation projector. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 2, pp. 92-103. http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a1/

[1] M. V. Nevskii, Geometricheskie Ocenki v Polinomial'noj Interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012, 218 pp. (in Russian)

[2] M. Hall Jr., Combinatorial Theory, Blaisdall Publishing Company, Mass., Toronto, London, 1967 | MR | Zbl

[3] K. J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, Princeton, 2007 | MR | Zbl

[4] P. K. Manjhi and M. K. Rama, “Some new examples of circulant partial Hadamard matrices of type $4- H (k \times n)$”, Advances and Applications in Mathematical Sciences, 21:5 (2022), 2559–2564

[5] M. Hudelson, V. Klee, and D. Larman, “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra and its applications, 241–243 (1996), 519–598 | DOI | MR | Zbl

[6] M. V. Nevskii, “Minimal projectors and largest simplices”, Modeling and Analysis of Information Systems, 14:1 (2007), 3–10

[7] J. Hadamard, “Résolution d'une question relative aux déterminants”, Bull. Sciences Math. (2), 17 (1893), 240–246

[8] G. Barba, “Intorno al. teorema di Hadamard sui determinanti a valore massimo”, Glornale Mat. Battaglini (3), 71 (1933), 70–86 | Zbl

[9] M. V. Nevskii, “Estimates for the minimal norm of a projector in linear interpolation over the vertices of an n-dimensional cube”, Modeling and Analysis of Information Systems, 10:1 (2003), 9–19

[10] M. V. Nevskii, “On a certain relation for the minimal norm of an interpolation projector”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43

[11] M. V. Nevskii and A. Y. Ukhalov, “On optimal interpolation by linear functions on an n-dimensional cube”, Modeling and Analysis of Information Systems, 25:3 (2018), 291–311 | DOI | MR

[12] I. S. Kudryavcev, E. A. Ozerova, and A. Y. Ukhalov, “Novye ocenki dlya norm minimal'nyh proektorov”, Sovremennye Problemy Matematiki i Informatiki, 17, P. G. Demidov Yaroslavl State University, Yaroslavl, 2017, 74–81 (in Russian)

[13] L. Fejes Tót, Regular Figures, Macmillan/Pergamon, New York, 1964 | MR

[14] D. Slepian, “The content of some extreme simplices”, Pacific J. Math., 31 (1969), 795–808 | DOI | MR | Zbl

[15] D. Vandev, “A minimal volume ellipsoid around a simplex”, C. R. Acad. Bulg. Sci., 45:6, 37–40 | MR | Zbl

[16] M. V. Nevskii and A. Y. Ukhalov, “Linear interpolation on a Euclidean ball in $\mathbb{R}^n$”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296 | DOI | MR | Zbl