Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_1_a3, author = {E. V. Kuzmin}, title = {LTL-specification of bounded counter machines}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {44--59}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a3/} }
E. V. Kuzmin. LTL-specification of bounded counter machines. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 1, pp. 44-59. http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a3/
[1] E. V. Kuzmin, “LTL-Specification of Counter Machines”, Modeling and Analysis of Information Systems, 28:1 (2021), 104–119 (in Russian) | DOI | MR
[2] M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Inc, 1967 | MR | Zbl
[3] R. Schroeppel, A Two Counter Machine Cannot Calculate $2^N$, Artificial Intelligence Memo #257, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1972, 32 pp.
[4] E. V. Kuzmin, Counter Machines, Yaroslavl State University, Yaroslavl, 2010, 128 (in Russian)
[5] Cadence SMV, http://www.kenmcmil.com/smv.html
[6] A. Pnueli, “The Temporal Logic of Programs”, 18th Annual Symposium on Foundations of Computer Science, SFCS 1977, IEEE Computer Society Press, 1977, 46–57 | MR
[7] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, The MIT Press, 2001 | MR
[8] C. Baier, J. P. Katoen, Principles of Model Checking, The MIT Press, 2008 | MR
[9] G. Priest, An Introduction to Non-Classical Logic. From if to is, Cambridge University Press, 2008, 648 | MR
[10] E. V. Kuzmin, Non-Classical Propositional Logics, P.G. Demidov Yaroslavl State University, Yaroslavl, 2016, 160 (in Russian)
[11] E. Clarke, O. Grumberg, K. Hamaguchi, Another Look at LTL Model Checking, Tech. Rep. CMU-CS-94-114, Carnegie Mellon University, 1994