Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_1_a0, author = {S. E. Mischenko and N. V. Shatskiy}, title = {The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {6--19}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a0/} }
TY - JOUR AU - S. E. Mischenko AU - N. V. Shatskiy TI - The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 6 EP - 19 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a0/ LA - ru ID - MAIS_2022_29_1_a0 ER -
%0 Journal Article %A S. E. Mischenko %A N. V. Shatskiy %T The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology %J Modelirovanie i analiz informacionnyh sistem %D 2022 %P 6-19 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a0/ %G ru %F MAIS_2022_29_1_a0
S. E. Mischenko; N. V. Shatskiy. The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 1, pp. 6-19. http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a0/
[1] R. Klemm, Principles of Space-Time Adaptive Processing, IEE, London, 2002
[2] M. Parker, Radar Basics-Part 4: Space-time adaptive processing, 2011 http://www.eetimes.com/design/programmable-logic/4217308/Radar-Basics-Part-4-Space-time-adaptive-processing
[3] W. Burger, Space-Time Adaptive Processing: Algorithms, 2006 http://ftp.rta.nato.int/public//PubFullText/RTO/EN/RTO-EN-SET-086///EN-SET-086-07.pdf
[4] S. Nefedov, I. Kruchkov, M. Noniashvili, G. Lesnikov, N. Soloviev, “A Review of the Signal Space-Time Adaptive Processing (STAP) Basic Techniques in Space-Based Radars with Synthetic Aperture”, Vestnik MGTU im N.E. Baumana. Ser. Priborostroenie, 2012, no. 8, 251–258
[5] M. Ratynskij, Adaptation and Superresolution in Array Antennas, Radio i svyaz, M., 2003
[6] S. Tulenev, A. Savinkov, V. Vereitin, “Application of CUDA Parallel Programming Technology to Increase the Speed Of Calculation of Superresolution Algorithms in Direction Finding”, Vestnik Voronezhskogo instituta MVD Rossii, 2021, no. 2, 196–203
[7] Developing a Linux Kernel Module using GPUDirect RDMA https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
[8] V. Voevodin, Numerical Methods of Algebra, Nauka, M., 1966
[9] A. Novikov, D. Gabriel'yan, E. Novikova, N. Shatskiy, Device to Covariance Matrix of Interference Sygnals Inversion, Rus. Patent 2 562 389, Sept. 2015
[10] M. Zvezdina, O. Komova, N. Shatskiy, A. Shokov, “Hermitian matrix inversion algorithm”, Vestnik Donskogo gosudarstvennogo universiteta, 2015, no. 2 (81), 78–84 | DOI
[11] F. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, New York, 1959 | MR
[12] T. Shoup, A Practical Guide to Computer Methods for Engineers, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1979
[13] C. Lomont, Fast Inverse Square Root, 2003 http://www.lomont.org/papers/2003/InvSqrt.pdf
[14] N. Shilov, D. Kondratyev, I. Anureev, E. Bodin, A. Promsky, “Platform-independent Specification and Verification of the Standard Mathematical Square Root Function”, Modeling and Analysis of Information Systems, 25:6 (2018), 637–666 | DOI | MR