The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology
Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 1, pp. 6-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of angular superresolution based on the Cholesky decomposition, which is a modification of the Capon algorithm, is proposed. It is shown that the proposed algorithm makes it possible to abandon the inversion of the covariance matrix of input signals. The proposed algorithm is compared with the Capon algorithm by the number of operations. It is established that the proposed algorithm, with a large dimension of the problem, provides some gain both when implemented on a single-threaded and multithreaded computer. Numerical estimates of the performance of the proposed and original algorithm using parallel computing technology CUDA NVidia are obtained. It is established that the proposed algorithm saves GPU computing resources and is able to solve the problem of constructing a spatial spectrum with an increase in the dimension of the covariance matrix of input signals by almost two times.
Keywords: digital array antennas, Capon super-resolution algorithm, Cholesky decomposition, bordering method, parallel computing.
@article{MAIS_2022_29_1_a0,
     author = {S. E. Mischenko and N. V. Shatskiy},
     title = {The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {6--19},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a0/}
}
TY  - JOUR
AU  - S. E. Mischenko
AU  - N. V. Shatskiy
TI  - The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2022
SP  - 6
EP  - 19
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a0/
LA  - ru
ID  - MAIS_2022_29_1_a0
ER  - 
%0 Journal Article
%A S. E. Mischenko
%A N. V. Shatskiy
%T The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology
%J Modelirovanie i analiz informacionnyh sistem
%D 2022
%P 6-19
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a0/
%G ru
%F MAIS_2022_29_1_a0
S. E. Mischenko; N. V. Shatskiy. The algorithm of angular superresolution using the cholesky decomposition and its implementation based on parallel computing technology. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 1, pp. 6-19. http://geodesic.mathdoc.fr/item/MAIS_2022_29_1_a0/

[1] R. Klemm, Principles of Space-Time Adaptive Processing, IEE, London, 2002

[2] M. Parker, Radar Basics-Part 4: Space-time adaptive processing, 2011 http://www.eetimes.com/design/programmable-logic/4217308/Radar-Basics-Part-4-Space-time-adaptive-processing

[3] W. Burger, Space-Time Adaptive Processing: Algorithms, 2006 http://ftp.rta.nato.int/public//PubFullText/RTO/EN/RTO-EN-SET-086///EN-SET-086-07.pdf

[4] S. Nefedov, I. Kruchkov, M. Noniashvili, G. Lesnikov, N. Soloviev, “A Review of the Signal Space-Time Adaptive Processing (STAP) Basic Techniques in Space-Based Radars with Synthetic Aperture”, Vestnik MGTU im N.E. Baumana. Ser. Priborostroenie, 2012, no. 8, 251–258

[5] M. Ratynskij, Adaptation and Superresolution in Array Antennas, Radio i svyaz, M., 2003

[6] S. Tulenev, A. Savinkov, V. Vereitin, “Application of CUDA Parallel Programming Technology to Increase the Speed Of Calculation of Superresolution Algorithms in Direction Finding”, Vestnik Voronezhskogo instituta MVD Rossii, 2021, no. 2, 196–203

[7] Developing a Linux Kernel Module using GPUDirect RDMA https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

[8] V. Voevodin, Numerical Methods of Algebra, Nauka, M., 1966

[9] A. Novikov, D. Gabriel'yan, E. Novikova, N. Shatskiy, Device to Covariance Matrix of Interference Sygnals Inversion, Rus. Patent 2 562 389, Sept. 2015

[10] M. Zvezdina, O. Komova, N. Shatskiy, A. Shokov, “Hermitian matrix inversion algorithm”, Vestnik Donskogo gosudarstvennogo universiteta, 2015, no. 2 (81), 78–84 | DOI

[11] F. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, New York, 1959 | MR

[12] T. Shoup, A Practical Guide to Computer Methods for Engineers, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1979

[13] C. Lomont, Fast Inverse Square Root, 2003 http://www.lomont.org/papers/2003/InvSqrt.pdf

[14] N. Shilov, D. Kondratyev, I. Anureev, E. Bodin, A. Promsky, “Platform-independent Specification and Verification of the Standard Mathematical Square Root Function”, Modeling and Analysis of Information Systems, 25:6 (2018), 637–666 | DOI | MR