Notes on recent achievements in proving stability using KeYmaeraX
Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 4, pp. 326-336.

Voir la notice de l'article provenant de la source Math-Net.Ru

KeYmaeraX is a Hoare-style theorem prover for hybrid systems. A hybrid system can be seen as an aggregation of both discrete and continuous variables, whose values can change abruptly or continuously, respectively. KeYmaeraX supports only variables having the primitive type bool or real. Due to the mixture of discrete and continuous system elements, one promising application area for KeYmaeraX are closed-loop control systems. A closed-loop control system consists of a plant and a controller. While the plant is basically an aggregation of continuous variables whose values change over time accordingly to physical laws, the controller can be seen as an algorithm formulated in a classical programming language. In this paper, we review some recent extensions of the proof calculus applied by KeYmaeraX that make formal proofs on the stability of dynamic systems more feasible. Based on an example, we first introduce to the topic and prove asymptotic stability of a given system in a hand-written mathematical style. This approach is then compared with a formal encoding of the problem and a formal proof established in KeYmaeraX. We also discuss open problems such as the formalization of asymptotic stability.
Keywords: cyber physical system, control theory, lyapunov function, imperative programming language.
@article{MAIS_2021_28_4_a1,
     author = {T. Baar and H. Schulte},
     title = {Notes on recent achievements in proving stability using {KeYmaeraX}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {326--336},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_4_a1/}
}
TY  - JOUR
AU  - T. Baar
AU  - H. Schulte
TI  - Notes on recent achievements in proving stability using KeYmaeraX
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2021
SP  - 326
EP  - 336
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2021_28_4_a1/
LA  - en
ID  - MAIS_2021_28_4_a1
ER  - 
%0 Journal Article
%A T. Baar
%A H. Schulte
%T Notes on recent achievements in proving stability using KeYmaeraX
%J Modelirovanie i analiz informacionnyh sistem
%D 2021
%P 326-336
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2021_28_4_a1/
%G en
%F MAIS_2021_28_4_a1
T. Baar; H. Schulte. Notes on recent achievements in proving stability using KeYmaeraX. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 4, pp. 326-336. http://geodesic.mathdoc.fr/item/MAIS_2021_28_4_a1/

[1] P. Baudin, F. Bobot, D. Bühler, L. Correnson, F. Kirchner, N. Kosmatov, A. Maroneze, V. Perrelle, V. Prevosto, J. Signoles, N. Williams, “The dogged pursuit of bug-free C programs: the Frama-C software analysis platform”, Communications of the ACM (CACM), 64:8 (2021), 56–68 | DOI

[2] C. A. R. Hoare, “An axiomatic basis for computer programming”, Commun. ACM, 12:10 (1969), 576–580 | DOI | Zbl

[3] A. Platzer, Logical foundations of cyber-physical systems, Springer, 2018 | DOI | Zbl

[4] J.-D.Quesel, S. Mitsch, S. Loos, N. Arechiga, A. Platzer, “How to Model and Prove Hybrid Systems with KeYmaera: A Tutorial on Safety”, STTT, 18:1 (2016), 67-91 | DOI

[5] T. Baar, S. Staroletov, “A control flow graph based approach to make the verification of cyber-physical systems using KeYmaera easier”, Modeling and Analysis of Information Systems, 25:5 (2018), 465-480 | DOI | MR

[6] T. Baar, “A Metamodel-Based Approach for Adding Modularization to KeYmaera's Input Syntax”, PSI (Novosibirsk), Lecture Notes in Computer Science, Springer, 2019, 125–139 | DOI | DOI

[7] A. Liapounoff, “Problème général de la stabilité du mouvement”, Annales de la faculté des sciences de Toulouse, 9:2 (1907), 203–474 (French translation of original work published in 1892.) http://www.numdam.org/item?id=AFST_1907_2_9__203_0 | MR | Zbl

[8] A. M. Lyapunov, “The general problem of the stability of motion”, International Journal of Control, 55:3 (1992), 531–773 (English translation of original work published in 1892.) | DOI

[9] D. Liberzon, Switching in systems and control, Birkhäuser, 2003 | DOI | Zbl

[10] R. E. Kalman, “On the general theory of control systems”, Proc. 1st world congress of the international federation of automatic control, 1960, 481–493

[11] V. I. Arnol'd, Gewöhnliche Differentialgleichungen, Springer-Verlag, Berlin–Heidelberg–New York, 1979

[12] J. L. Salle, S. Lefschetz, Die Stabilitätstheorie von Ljapunov, BI Hochschultaschenbücher, Mannheim, 1974

[13] Y. K. Tan, A. Platzer, “Deductive stability proofs for ordinary differential equations”, Tools and Algorithms for the Construction and Analysis of Systems, 27th International Conference, TACAS 2021, Held as Part of the European Joint Conferences on {ØE}eory and Practice of Software, ETAPS 2021 (Luxembourg City, Luxembourg, March 27–April 1, 2021), v. II, Lecture Notes in Computer Science, 12652, eds. J. F. Groote, K. G. Larsen, Springer, 2021, 181–199 | DOI | Zbl

[14] Y. K. Tan, A. Platzer, “Switched systems as hybrid programs”, 7th IFAC conference on analysis and design of hybrid systems, ADHS 2021 (Brussels, Belgium, July 7–9, 2021), IFAC-PapersOnLine, 54, no. 5, eds. R. M. Jungers, N. Ozay, A. Abate, Elsevier, 2021, 247–252 | DOI

[15] U. Topcu, A. K. Packard, P. J. Seiler, “Local stability analysis using simulations and sum-of-squares programming”, Autom., 44:10 (2008), 2669–2675 | DOI | MR | Zbl

[16] M. Anghel, F. Milano, A. Papachristodoulou, “Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis”, IEEE Trans. Circuits Syst. I Regul. Pap., 60-I:9 (2013), 2533–2546 | DOI | MR | Zbl

[17] K. Forsman, “Construction of Lyapunov functions using Grobner bases”, Proceedings of the 30th IEEE conference on decision and control, 1991, 798-799 | DOI

[18] J. Liu, N. Zhan, H. Zhao, “Automatically Discovering Relaxed Lyapunov Functions for Polynomial Dynamical Systems”, Math. Comput. Sci., 6:4 (2012), 395–408 | DOI | MR | Zbl

[19] S. Sankaranarayanan, H. B. Sipma, Z. Manna, “Constructing invariants for hybrid systems”, International workshop on hybrid systems: computation and control, Springer, 2004, 539–554 | DOI | Zbl

[20] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems”, IEEE Trans. Autom. Control., 43:4 (1998), 475–482 | DOI | MR | Zbl

[21] Z. Sun, S. S. Ge, Stability theory of switched dynamical systems, Communications and Control Engineering, Springer, 2011 | DOI | Zbl

[22] A. Podelski, S. Wagner, “Model checking of hybrid systems: from reachability towards stability”, Hybrid Systems: Computation and Control, 9th International Workshop, HSCC 2006 (Santa Barbara, CA, USA, March 29–31, 2006), Lecture Notes in Computer Science, 3927, eds. J. P. Hespanha, A. Tiwari, Springer, 2006, 507–521 | DOI | Zbl