Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2021_28_3_a6, author = {V. I. Yuferev and N. A. Razin}, title = {Word-embedding based text vectorization using clustering}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {292--311}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a6/} }
TY - JOUR AU - V. I. Yuferev AU - N. A. Razin TI - Word-embedding based text vectorization using clustering JO - Modelirovanie i analiz informacionnyh sistem PY - 2021 SP - 292 EP - 311 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a6/ LA - ru ID - MAIS_2021_28_3_a6 ER -
V. I. Yuferev; N. A. Razin. Word-embedding based text vectorization using clustering. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 3, pp. 292-311. http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a6/
[1] P. Sitikhu, K. Pahi, P. Thapa, S. Shakya, “A comparison of semantic similarity methods for maximum human interpretability”, 2019 Artificial Intelligence for Transforming Business and Society (AITB), v. 1, 2019, 1-4 | DOI
[2] C. D. Manning, P. Raghavan, H. Schütze, Introduction to information retrieval, Cambridge University Press, USA, 2008 | Zbl
[3] C. De Boom, S. Van Canneyt, T. Demeester, B. Dhoedt, “Representation learning for very short texts using weighted word embedding aggregation”, Pattern Recogn. Lett., 80C (2016), 150–156 | DOI
[4] G. Kim, K. Cho, Length-adaptive transformer: train once with length drop, use anytime with search, 2020, arXiv: 2010.07003
[5] O. Zafrir, G. Boudoukh, P. Izsak, M. Wasserblat, Q8bert: quantized 8bit bert, 2019, arXiv: 1910.06188
[6] H. Gong, Y. Shen, D. Yu, J. Chen, D. Yu, “Recurrent chunking mechanisms for long-text machine reading comprehension”, Proceedings of the 58th annual meeting of the association for computational linguistics, Association for Computational Linguistics, 2020, 6751–6761 https://www.aclweb.org/anthology/2020.acl-main.603 | DOI
[7] Y. Qi, D. Sachan, M. Felix, S. Padmanabhan, G. Neubig, When and why are pre-trained word embeddings useful for neural machine translation?, Proceedings of the 2018 conference of the North American Chapter of the Association for Computational Linguistics: human language technologies, v. 2, short papers, Association for Computational Linguistics, New Orleans, Louisiana, 2018, 529–535 https://www.aclweb.org/anthology/N18-2084 | DOI
[8] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, L. Carin, “Baseline needs more love: on simple word-embedding-based models and associated pooling mechanisms”, Proceedings of the 56th annual meeting of the Association for Computational Linguistics, v. 1, long papers, Association for Computational Linguistics, Melbourne, Australia, 2018, 440–450 https://www.aclweb.org/anthology/P18-1041 | DOI
[9] A. Rücklé, S. Eger, M. Peyrard, I. Gurevych, Concatenated p-mean word embeddings as universal cross-lingual sentence representations, 2018, arXiv: 1803.01400
[10] P. Turney, P. Pantel, “From frequency to meaning: vector space models of semantics”, Journal of Artificial Intelligence Research, 37 (2010), 141–188 | DOI | MR | Zbl
[11] A. L. O. Shahmirzadi, K. Younge, “Text similarity in vector space models: a comparative study”, 2019 18th IEEE international conference on machine learning and applications, ICMLA, 2019, 659–666 | DOI
[12] V. Gupta, A. Kumar, P. Nokhiz, H. Gupta, P. Talukdar, “Improving document classification with multi-sense embeddings”, 24th European conference on artificial intelligence, ECAI 2020, 2020, 2030–2037 | DOI
[13] V. Mekala, Dheeraj, Gupta, B. Paranjape, H. Karnick, “SCDV: sparse composite document vectors using soft clustering over distributional representations”, Proceedings of the 2017 conference on empirical methods in natural language processing, Association for Computational Linguistics, Copenhagen, Denmark, 2017, 659–669 https://www.aclweb.org/anthology/D17-1069 | DOI
[14] V. Gupta, H. Karnick, A. Bansal, P. Jhala, “Product classification in e-commerce using distributional semantics”, Proceedings of COLING 2016, the 26th International conference on Computational Linguistics, technical papers, The COLING 2016 Organizing Committee, Osaka, Japan, 2016, 536–546 https://www.aclweb.org/anthology/C16-1052