Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2021_28_3_a5, author = {K. V. Lagutina and N. S. Lagutina and E. I. Boychuk}, title = {Text classification by genre based on rhythm features}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {280--291}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a5/} }
TY - JOUR AU - K. V. Lagutina AU - N. S. Lagutina AU - E. I. Boychuk TI - Text classification by genre based on rhythm features JO - Modelirovanie i analiz informacionnyh sistem PY - 2021 SP - 280 EP - 291 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a5/ LA - ru ID - MAIS_2021_28_3_a5 ER -
K. V. Lagutina; N. S. Lagutina; E. I. Boychuk. Text classification by genre based on rhythm features. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 3, pp. 280-291. http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a5/
[1] J. Worsham, J. Kalita, “Genre identification and the compositional effect of genre in literature”, Proceedings of the 27th international conference on computational linguistics, 2018, 1963–1973
[2] M. N. Melissourgou, K. T. Frantzi, “Genre identification based on SFL principles: the representation of text types and genres in English language teaching material”, Corpus Pragmatics, 1:4 (2017), 373–392, Springer | DOI
[3] L. A. Kochetova, V. V. Popov, “Research of axiological dominants in press release genre based on automatic extraction of key words from corpus”, Nauchnyi dialog, 2019, no. 6 (In Russian) | DOI
[4] S. E. Murphy, “Shakespeare and his contemporaries: designing a genre classification scheme for early English books online 1560-1640”, ICAME Journal, 2019, 59–82 | DOI
[5] R. Malhotra, A. Sharma, “Quantitative evaluation of web metrics for automatic genre classification of web pages”, International Journal of System Assurance Engineering and Management, 8:2 (2017), 1567–1579, Springer
[6] V. Thakur, A. C. Patel, “An improved dictionary based genre classification based on title and abstract of e-book using machine learning algorithms”, Proceedings of second international conference on computing, communications, and cyber-security, Springer, 2021, 323–337 | DOI
[7] D. Dejica, “Understanding technical and scientific translation: a genre-based approach”, Scientific Bulletin of the Politehnica University of Timisoara. Transactions on Modern Languages/Buletinul Stiintific al Universitatii Politehnica din Timisoara. Seria Limbi Moderne, 19:1 (2020), 56–66
[8] A. Cimino, M. Wieling, F. Dell'Orletta, S. Montemagni, G. Venturi, “Identifying predictive features for textual genre classification: the key role of syntax”, Proceedings of the Fourth Italian Conference on Computational Linguistics CLiC-it 2017, 2017, 107–112 | DOI
[9] K. Lagutina, A. Poletaev, N. Lagutina, E. Boychuk, I. Paramonov, “Automatic extraction of rhythm figures and analysis of their dynamics in prose of 19th-21st centuries”, Proceedings of the 26th Conference of Open Innovations Association FRUCT, IEEE, 2020, 247–255
[10] K. Lagutina, N. Lagutina, E. Boychuk, V. Larionov, I. Paramonov, “Authorship verification of literary texts with rhythm features”, Proceedings of the 28th Conference of Open Innovations Association FRUCT, IEEE, 2021, 240–251
[11] A. Onan, “An ensemble scheme based on language function analysis and feature engineering for text genre classification”, Journal of Information Science, 44:1 (2018), 28–47 | DOI
[12] A. M. El-Halees, “Arabic text genre classification”, Journal of Engineering Research and Technology, 4:3 (2017), 105–109
[13] I. A. Batraeva, A. D. Nartsev, A. S. Lezgyan, “Using the analysis of semantic proximity of words in solving the problem of determining the genre of texts within deep learning”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie vychislitelnaja tehnika i informatika, 2020, no. 50, 14–22 (In Russian) | DOI
[14] V. B. Barahnin, O. Y. Kozhemyakina, E. V. Rychkova, I. S. Pastushkov, Y. S. Borzilova, “Izvlechenie leksicheskih i metroritmicheskih priznakov, harakternyh dlya zhanra i stilya i ih kombinacij v processe avtomatizirovannoj obrabotki tekstov na russkom yazyke”, Sovremennye informacionnye tekhnologii i IT-obrazovanie, 14:4 (2018), 888–895 (In Russian)
[15] O. A. Mitrofanova, A. D. Moskvina, “On the role of prepositional statistics for genre identification of Russian texts”, International Journal of Open Information Technologies, 8:11 (2020), 91–96 (In Russian)
[16] L. G. Gorbich, A. A. Zhivoderov, “Using statistical indexes to distinguish between scientific and popular science texts on the example of the works of A. E. Fersman”, Software Systems, 33:4 (2020), 720–725 (In Russian) | DOI
[17] A. R. Dubovik, “Automatic text style identification in terms of statistical parameters”, Komp'yuternaya lingvistika i vychislitel'nye ontologii, 2017, no. 1, 29–45 (In Russian)
[18] A. Y. Antonova, E. S. Klyshinskij, E. V. Yagunova, “Opredelenie stilevyh i zhanrovyh harakteristik kollekcij tekstov na osnove chasterechnoj sochetaemosti”, Otkrytye sistemy, 3 (2011), 80–85 (In Russian)
[19] M. Sokolova, G. Lapalme, “A systematic analysis of performance measures for classification tasks”, Information processing management, 45:4 (2009), 427–437 | DOI
[20] L. Kozlova, Sravnitel'naya tipologiya anglijskogo i russkogo yazykov, AltGPU, Barnaul, 2019, 180 pp. (In Russian)
[21] A. Wierzbicka, The semantics of grammar, Studies in Language Companion Series, 18, John Benjamins Publishing, 1988, 617 pp. | DOI