Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2021_28_3_a2, author = {S. N. Chukanov and I. S. Chukanov}, title = {The investigation of nonlinear polynomial control systems}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {238--249}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a2/} }
TY - JOUR AU - S. N. Chukanov AU - I. S. Chukanov TI - The investigation of nonlinear polynomial control systems JO - Modelirovanie i analiz informacionnyh sistem PY - 2021 SP - 238 EP - 249 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a2/ LA - en ID - MAIS_2021_28_3_a2 ER -
S. N. Chukanov; I. S. Chukanov. The investigation of nonlinear polynomial control systems. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 3, pp. 238-249. http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a2/
[1] N. N. Krasovsky, Problems of the theory of stability of motion, Mir, M., 1959
[2] A. Papachristodoulou, S. Prajna, “On the construction of Lyapunov functions using the sum of squares decomposition”, Proceedings of the 41st IEEE conference on decision and control (2002), v. 3, IEEE, 2002, 3482–3487 | DOI
[3] K. Forsman, “Construction of Lyapunov functions using Gröbner bases”, 1991 proceedings of the 30th IEEE conference on decision and control, IEEE, 1991, 798–799
[4] S. N. Chukanov, D. V. Ulyanov, “Decomposition of the vector field of control system by constructing a homotopy operator”, Probl. Upr., 6 (2012), 2–6
[5] D. G. Edelen, Applied exterior calculus, John Wiley Sons, Inc., 1985 | Zbl
[6] X. Liao, L. Wang, P. Yu, Stability of dynamical systems, Elsevier, 2007 | Zbl
[7] H. K. Khalil, Nonlinear systems, Prentice hall, 2002 | Zbl
[8] D. Nesic, I. Mareels, T. Glad, M. Jirstrand, “The Gröbner basis method in control design: an overview”, IFAC proceedings volumes, 35:1 (2002), 13-18 | DOI
[9] B. Buchberger, “Ein algorithmisches kriterium für die lösbarkeit eines algebraischen gleichungssystems”, Aequationes Muthematicae, 4:3 (1970), 374–383 | DOI | MR | Zbl
[10] J. L. Awange, é Paláncz, R. H. Lewis, L. Völgyesi, Mathematical geosciences – hybrid symbolic-numeric methods, Springer International Publishers, 2018 | Zbl
[11] S. Wolfram, The mathematica book, Wolfram Media, 2003
[12] M. Demenkov, “A Matlab tool for regions of attraction estimation via numerical algebraic geometry”, 2015 international conference on mechanics-seventh Polyakhov's reading, 2015, 1–5
[13] N. Sidorov, D. Sidorov, Y. Li, “Basins of attraction and stability of nonlinear systems equilibrium points”, Differential Equations and Dynamical Systems, Springer, 2019, 1––10
[14] D. G. Luenberger, Y. Ye, Linear and nonlinear programming, Springer, 2016 | Zbl