On properties of a regular simplex inscribed into a ball
Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 2, pp. 186-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a Euclidean ball in ${\mathbb R}^n$ and let $C(B)$ be a space of continuos functions $f:B\to{\mathbb R}$ with the uniform norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ we mean a set of polynomials of degree $\leq 1$, i. e., a set of linear functions upon ${\mathbb R}^n$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in B$ is defined by the equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$, $j=1,\ldots, n+1$.The norm of $P$ as an operator from $C(B)$ to $C(B)$ can be calculated by the formula $\|P\|_B=\max_{x\in B}\sum |\lambda_j(x)|.$ Here $\lambda_j$ are the basic Lagrange polynomials corresponding to the $n$-dimensional nondegenerate simplex $S$ with the vertices $x^{(j)}$. Let $P^\prime$ be a projector having the nodes in the vertices of a regular simplex inscribed into the ball. We describe the points $y\in B$ with the property $\|P^\prime\|_B=\sum |\lambda_j(y)|$. Also we formulate some geometric conjecture which implies that $\|P^\prime\|_B$ is equal to the minimal norm of an interpolation projector with nodes in $B$. We prove that this conjecture holds true at least for $n=1,2,3,4$.
Mots-clés : simplex, norm.
Keywords: ball, linear interpolation, projector
@article{MAIS_2021_28_2_a4,
     author = {M. V. Nevskii},
     title = {On properties of a regular simplex inscribed into a ball},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {186--197},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/}
}
TY  - JOUR
AU  - M. V. Nevskii
TI  - On properties of a regular simplex inscribed into a ball
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2021
SP  - 186
EP  - 197
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/
LA  - ru
ID  - MAIS_2021_28_2_a4
ER  - 
%0 Journal Article
%A M. V. Nevskii
%T On properties of a regular simplex inscribed into a ball
%J Modelirovanie i analiz informacionnyh sistem
%D 2021
%P 186-197
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/
%G ru
%F MAIS_2021_28_2_a4
M. V. Nevskii. On properties of a regular simplex inscribed into a ball. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 2, pp. 186-197. http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/

[1] M. V. Nevskii, Geometricheskie ocenki v polinomial'noj interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012

[2] M. V. Nevskii, A. Y. Ukhalov, “Linear interpolation on a euclidean ball in $\mathbb R^n$”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296 | DOI | MR

[3] M. V. Nevskii, A. Y. Ukhalov, “On optimal interpolation by linear functions on an $n$-Dimensional cube”, Modeling and Analysis of Information Systems, 25:3 (2018), 291–311 | DOI | MR

[4] M. Nevskii, A. Ukhalov, “Perfect simplices in $\mathbb R^5$”, Beitr. Algebra Geom., 59:3 (2018), 501–521 | DOI | MR | Zbl

[5] M. V. Nevskii, “On some problems for a simplex and a ball in $\mathbb R^n$”, Modeling and Analysis of Information Systems, 25:6 (2018), 680–691 | DOI | MR

[6] M. V. Nevskii, “Geometric estimates in interpolation on an n-Dimensional ball”, Modeling and Analysis of Information Systems, 26:3 (2019), 441–449 | DOI | MR

[7] M. V. Nevskii, “Computation of the longest segment of a given direction in a simplex”, Journal of Mathematical Sciences, 203:6 (2014), 851–854 | DOI | MR | Zbl

[8] F. John, “Extremum problems with inequalities as subsidiary conditions”, Studies and essays presented to R. Courant on his 60th birthday (Jan. 8, 1948), Interscience, New York, 1948, 187–204 | MR

[9] K. Ball, Ellipsoids of maximal volume in convex bodies, Sep 25, 1990, arXiv: math/9201217v1 [math.MG] | MR

[10] K. Ball, “An elementary introduction to modern convex geometry”, Math. Sci. Res. Inst. Publ., 31:1 (1997), 1–58 | MR | Zbl

[11] L. Fejes Tót, Regular figures, Macmillan/Pergamon, New York, 1964 | MR

[12] D. Slepian, “The content of some extreme simplices”, Pacific J. Math., 31 (1969), 795–808 | DOI | MR | Zbl

[13] D. Vandev, “A minimal volume ellipsoid around a simplex”, C. R. Acad. Bulg. Sci., 45:6 (1992), 37–40 | MR | Zbl

[14] G. M. Fikhtengol'ts, Kurs differencial'nogo i integral'nogo ischisleniya, v. 3, Fizmatlit, M., 2001

[15] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 2002 | MR