On properties of a regular simplex inscribed into a ball
Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 2, pp. 186-197

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a Euclidean ball in ${\mathbb R}^n$ and let $C(B)$ be a space of continuos functions $f:B\to{\mathbb R}$ with the uniform norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ we mean a set of polynomials of degree $\leq 1$, i. e., a set of linear functions upon ${\mathbb R}^n$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in B$ is defined by the equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$, $j=1,\ldots, n+1$.The norm of $P$ as an operator from $C(B)$ to $C(B)$ can be calculated by the formula $\|P\|_B=\max_{x\in B}\sum |\lambda_j(x)|.$ Here $\lambda_j$ are the basic Lagrange polynomials corresponding to the $n$-dimensional nondegenerate simplex $S$ with the vertices $x^{(j)}$. Let $P^\prime$ be a projector having the nodes in the vertices of a regular simplex inscribed into the ball. We describe the points $y\in B$ with the property $\|P^\prime\|_B=\sum |\lambda_j(y)|$. Also we formulate some geometric conjecture which implies that $\|P^\prime\|_B$ is equal to the minimal norm of an interpolation projector with nodes in $B$. We prove that this conjecture holds true at least for $n=1,2,3,4$.
Mots-clés : simplex, norm.
Keywords: ball, linear interpolation, projector
@article{MAIS_2021_28_2_a4,
     author = {M. V. Nevskii},
     title = {On properties of a regular simplex inscribed into a ball},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {186--197},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/}
}
TY  - JOUR
AU  - M. V. Nevskii
TI  - On properties of a regular simplex inscribed into a ball
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2021
SP  - 186
EP  - 197
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/
LA  - ru
ID  - MAIS_2021_28_2_a4
ER  - 
%0 Journal Article
%A M. V. Nevskii
%T On properties of a regular simplex inscribed into a ball
%J Modelirovanie i analiz informacionnyh sistem
%D 2021
%P 186-197
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/
%G ru
%F MAIS_2021_28_2_a4
M. V. Nevskii. On properties of a regular simplex inscribed into a ball. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 2, pp. 186-197. http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/