Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2021_28_2_a4, author = {M. V. Nevskii}, title = {On properties of a regular simplex inscribed into a ball}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {186--197}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/} }
M. V. Nevskii. On properties of a regular simplex inscribed into a ball. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 2, pp. 186-197. http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a4/
[1] M. V. Nevskii, Geometricheskie ocenki v polinomial'noj interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012
[2] M. V. Nevskii, A. Y. Ukhalov, “Linear interpolation on a euclidean ball in $\mathbb R^n$”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296 | DOI | MR
[3] M. V. Nevskii, A. Y. Ukhalov, “On optimal interpolation by linear functions on an $n$-Dimensional cube”, Modeling and Analysis of Information Systems, 25:3 (2018), 291–311 | DOI | MR
[4] M. Nevskii, A. Ukhalov, “Perfect simplices in $\mathbb R^5$”, Beitr. Algebra Geom., 59:3 (2018), 501–521 | DOI | MR | Zbl
[5] M. V. Nevskii, “On some problems for a simplex and a ball in $\mathbb R^n$”, Modeling and Analysis of Information Systems, 25:6 (2018), 680–691 | DOI | MR
[6] M. V. Nevskii, “Geometric estimates in interpolation on an n-Dimensional ball”, Modeling and Analysis of Information Systems, 26:3 (2019), 441–449 | DOI | MR
[7] M. V. Nevskii, “Computation of the longest segment of a given direction in a simplex”, Journal of Mathematical Sciences, 203:6 (2014), 851–854 | DOI | MR | Zbl
[8] F. John, “Extremum problems with inequalities as subsidiary conditions”, Studies and essays presented to R. Courant on his 60th birthday (Jan. 8, 1948), Interscience, New York, 1948, 187–204 | MR
[9] K. Ball, Ellipsoids of maximal volume in convex bodies, Sep 25, 1990, arXiv: math/9201217v1 [math.MG] | MR
[10] K. Ball, “An elementary introduction to modern convex geometry”, Math. Sci. Res. Inst. Publ., 31:1 (1997), 1–58 | MR | Zbl
[11] L. Fejes Tót, Regular figures, Macmillan/Pergamon, New York, 1964 | MR
[12] D. Slepian, “The content of some extreme simplices”, Pacific J. Math., 31 (1969), 795–808 | DOI | MR | Zbl
[13] D. Vandev, “A minimal volume ellipsoid around a simplex”, C. R. Acad. Bulg. Sci., 45:6 (1992), 37–40 | MR | Zbl
[14] G. M. Fikhtengol'ts, Kurs differencial'nogo i integral'nogo ischisleniya, v. 3, Fizmatlit, M., 2001
[15] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 2002 | MR